Using binary classification to evaluate the quality of machine translators

Ran Li, Yihao Yang, Kelin Shen, Mohammed Hijji
{"title":"Using binary classification to evaluate the quality of machine translators","authors":"Ran Li, Yihao Yang, Kelin Shen, Mohammed Hijji","doi":"10.48129/kjs.splml.19547","DOIUrl":null,"url":null,"abstract":"Machine translators have become increasingly popular and currently play an important role because of their great assistance in cross-cultural communication. However, machine translators often produces some unnatural texts, and an evaluation of machine translators is thus needed to avoid the abuse of machine-translated texts. This paper presents the use of binary classification to evaluate the quality of machine translators without references. First, we construct a large-scale dataset including humangenerated texts and machine-translated texts. Second, the dataset is used to train the multiple binary classifiers, e.g., decision tree, random forest, extreme gradient boosting, support vector machines, logistic regression, etc. Finally, these trained classifiers constitute the ensemble model by majority voting, and this ensemble model is used to evaluate the qualities of machine-translated texts. Experimental results show that the proposed evaluation method better measures the qualities of translated texts by some commercial machine translators.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.splml.19547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine translators have become increasingly popular and currently play an important role because of their great assistance in cross-cultural communication. However, machine translators often produces some unnatural texts, and an evaluation of machine translators is thus needed to avoid the abuse of machine-translated texts. This paper presents the use of binary classification to evaluate the quality of machine translators without references. First, we construct a large-scale dataset including humangenerated texts and machine-translated texts. Second, the dataset is used to train the multiple binary classifiers, e.g., decision tree, random forest, extreme gradient boosting, support vector machines, logistic regression, etc. Finally, these trained classifiers constitute the ensemble model by majority voting, and this ensemble model is used to evaluate the qualities of machine-translated texts. Experimental results show that the proposed evaluation method better measures the qualities of translated texts by some commercial machine translators.
用二值分类评价机器翻译质量
机器翻译在跨文化交际中发挥着重要作用,越来越受到人们的欢迎。然而,机器翻译经常会产生一些不自然的文本,因此需要对机器翻译进行评估,以避免机器翻译文本的滥用。本文介绍了在没有参考文献的情况下,用二分类法评价机器翻译质量的方法。首先,我们构建了一个包含人工生成文本和机器翻译文本的大规模数据集。其次,利用该数据集训练多个二元分类器,如决策树、随机森林、极端梯度增强、支持向量机、逻辑回归等。最后,这些训练好的分类器通过多数投票构成集成模型,该集成模型用于评估机器翻译文本的质量。实验结果表明,本文提出的评价方法能够较好地衡量一些商用机器翻译的译文质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信