{"title":"Alternative Method for Pressure Transient Analysis","authors":"F. Franco, A. Rincón, M. Useche","doi":"10.2118/193261-ms","DOIUrl":null,"url":null,"abstract":"\n An alternative method is presented for estimation of reservoir properties that are usually estimated in a classic buildup test are obtained using flowing conditions thereby eliminating the need for shut-in periods and measurement of static pressure data.\n The proposed approach is based on the effect of two consecutive periods of production with different rates in a single well-reservoir model. The well is initially produced at a constant rate until pseudo-steady state conditions are reached, followed by a different rate that will generate a pressure transient response measured at bottom of the wellbore. A mathematical formulation is applied to estimate the reservoir pressure as function of radius of investigation, which is equal to the bottom hole pressure observed during a shut-in buildup test.\n A single well-reservoir model with known petrophysical parameters, fluid properties, pressure and temperature is used as a reference to evaluate the proposed methodology. The reservoir (i.e. the simulation model) is tested by applying two methods: the first one, is the simulation of a classic buildup test, and the second one, is the simulation of two flow rates periods according to the new theory; the results are compared with the model of reference, calculating percentage of error for permeability, skin, and average reservoir pressure. Additionally, it is demonstrated that a shut-in period is not required to obtain data equivalent to a classic buildup test since it is possible to calculate it from dynamic behavior.\n The ability to complete a well pressure transient analysis test from flowing conditions and provide valid and reliable results has a direct impact in reduction of cost and deferred production for companies involved in oil and gas operations.","PeriodicalId":11208,"journal":{"name":"Day 2 Tue, November 13, 2018","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 13, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193261-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An alternative method is presented for estimation of reservoir properties that are usually estimated in a classic buildup test are obtained using flowing conditions thereby eliminating the need for shut-in periods and measurement of static pressure data.
The proposed approach is based on the effect of two consecutive periods of production with different rates in a single well-reservoir model. The well is initially produced at a constant rate until pseudo-steady state conditions are reached, followed by a different rate that will generate a pressure transient response measured at bottom of the wellbore. A mathematical formulation is applied to estimate the reservoir pressure as function of radius of investigation, which is equal to the bottom hole pressure observed during a shut-in buildup test.
A single well-reservoir model with known petrophysical parameters, fluid properties, pressure and temperature is used as a reference to evaluate the proposed methodology. The reservoir (i.e. the simulation model) is tested by applying two methods: the first one, is the simulation of a classic buildup test, and the second one, is the simulation of two flow rates periods according to the new theory; the results are compared with the model of reference, calculating percentage of error for permeability, skin, and average reservoir pressure. Additionally, it is demonstrated that a shut-in period is not required to obtain data equivalent to a classic buildup test since it is possible to calculate it from dynamic behavior.
The ability to complete a well pressure transient analysis test from flowing conditions and provide valid and reliable results has a direct impact in reduction of cost and deferred production for companies involved in oil and gas operations.