Trajectory grouping structure

IF 0.4 Q4 MATHEMATICS
K. Buchin, M. Buchin, M. V. Kreveld, B. Speckmann, F. Staals
{"title":"Trajectory grouping structure","authors":"K. Buchin, M. Buchin, M. V. Kreveld, B. Speckmann, F. Staals","doi":"10.20382/jocg.v6i1a3","DOIUrl":null,"url":null,"abstract":"The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The  trajectory grouping structure  has three natural parameters that allow more global views of the data in group size, group duration, and entity inter-distance. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. We also study how the trajectory grouping structure can be made robust, that is, how brief interruptions of groups can be disregarded in the global structure, adding a notion of persistence to the structure. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. The Starkey data describe the movement of elk, deer, and cattle. Although there is no ground truth for the grouping structure in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial, algorithmic, and experimental results.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"2008 1","pages":"219-230"},"PeriodicalIF":0.4000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v6i1a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 51

Abstract

The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The  trajectory grouping structure  has three natural parameters that allow more global views of the data in group size, group duration, and entity inter-distance. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. We also study how the trajectory grouping structure can be made robust, that is, how brief interruptions of groups can be disregarded in the global structure, adding a notion of persistence to the structure. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. The Starkey data describe the movement of elk, deer, and cattle. Although there is no ground truth for the grouping structure in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial, algorithmic, and experimental results.
轨迹分组结构
一组运动实体的集体运动,如人、鸟或其他动物,其特征是群体的产生、合并、分裂和结束。给定这些实体的轨迹,我们定义并建模一个结构,该结构使用Reeb图(拓扑中的一个概念)捕获所有这些变化。轨迹分组结构有三个自然参数,允许在组大小、组持续时间和实体间距离方面对数据进行更多的全局视图。证明了可存在的最大群的最大数目的复杂度界,并给出了有效计算群结构的算法。我们还研究了如何使轨迹分组结构变得健壮,也就是说,如何在全局结构中忽略分组的短暂中断,向结构中添加持久性的概念。此外,我们展示了使用NetLogo群集模型和Starkey项目生成的数据的实验结果。斯塔奇的数据描述了麋鹿、鹿和牛的运动。虽然该数据的分组结构不存在基本真理,但实验表明,当改变基本参数时,轨迹分组结构是合理的,并且具有预期的效果。我们的研究提供了第一个完整的轨迹群进化的研究,包括组合,算法和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信