Energy Efficient Boosting of GEMM Accelerators for DNN via Reuse

Nihat Mert Cicek, Xipeng Shen, O. Ozturk
{"title":"Energy Efficient Boosting of GEMM Accelerators for DNN via Reuse","authors":"Nihat Mert Cicek, Xipeng Shen, O. Ozturk","doi":"10.1145/3503469","DOIUrl":null,"url":null,"abstract":"Reuse-centric convolutional neural networks (CNN) acceleration speeds up CNN inference by reusing computations for similar neuron vectors in CNN’s input layer or activation maps. This new paradigm of optimizations is, however, largely limited by the overheads in neuron vector similarity detection, an important step in reuse-centric CNN. This article presents an in-depth exploration of architectural support for reuse-centric CNN. It addresses some major limitations of the state-of-the-art design and proposes a novel hardware accelerator that improves neuron vector similarity detection and reduces the energy consumption of reuse-centric CNN inference. The accelerator is implemented to support a wide variety of neural network settings with a banked memory subsystem. Design exploration is performed through RTL simulation and synthesis on an FPGA platform. When integrated into Eyeriss, the accelerator can potentially provide improvements up to 7.75 \\( \\times \\) in performance. Furthermore, it can reduce the energy used for similarity detection up to 95.46%, and it can accelerate the convolutional layer up to 3.63 \\( \\times \\) compared to the software-based implementation running on the CPU.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"29 1","pages":"1 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reuse-centric convolutional neural networks (CNN) acceleration speeds up CNN inference by reusing computations for similar neuron vectors in CNN’s input layer or activation maps. This new paradigm of optimizations is, however, largely limited by the overheads in neuron vector similarity detection, an important step in reuse-centric CNN. This article presents an in-depth exploration of architectural support for reuse-centric CNN. It addresses some major limitations of the state-of-the-art design and proposes a novel hardware accelerator that improves neuron vector similarity detection and reduces the energy consumption of reuse-centric CNN inference. The accelerator is implemented to support a wide variety of neural network settings with a banked memory subsystem. Design exploration is performed through RTL simulation and synthesis on an FPGA platform. When integrated into Eyeriss, the accelerator can potentially provide improvements up to 7.75 \( \times \) in performance. Furthermore, it can reduce the energy used for similarity detection up to 95.46%, and it can accelerate the convolutional layer up to 3.63 \( \times \) compared to the software-based implementation running on the CPU.
通过重复使用提高DNN的GEMM加速器的能效
以重用为中心的卷积神经网络(CNN)通过重用CNN输入层或激活图中相似神经元向量的计算来加速CNN推理。然而,这种新的优化范例在很大程度上受到神经元向量相似性检测的开销的限制,这是以重用为中心的CNN的重要一步。本文将深入探讨以重用为中心的CNN的体系结构支持。它解决了最先进设计的一些主要限制,并提出了一种新的硬件加速器,可以改进神经元向量相似性检测并降低以重用为中心的CNN推理的能耗。加速器的实现是为了支持各种各样的神经网络设置与存储子系统。在FPGA平台上通过RTL仿真和综合进行设计探索。当集成到Eyeriss时,加速器可能会提供高达7.75 \( \times \)的性能改进。此外,它可以减少相似性检测的能量高达95.46%, and it can accelerate the convolutional layer up to 3.63 \( \times \) compared to the software-based implementation running on the CPU.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信