Fault diagnosis of a mine hoist using PCA and SVM techniques

CHANG Yan-wei , WANG Yao-cai , LIU Tao , WANG Zhi-jie
{"title":"Fault diagnosis of a mine hoist using PCA and SVM techniques","authors":"CHANG Yan-wei ,&nbsp;WANG Yao-cai ,&nbsp;LIU Tao ,&nbsp;WANG Zhi-jie","doi":"10.1016/S1006-1266(08)60069-3","DOIUrl":null,"url":null,"abstract":"<div><p>A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Then, with the irrelevant gearbox variables removed, the remaining gearbox, the hydraulic system and the wire rope parameters were used as input to a multi-class SVM. The SVM is first trained by using the one class-based multi-class optimization algorithm and it is then applied to fault identification. Comparison of various methods showed the PCA-SVM method successfully removed redundancy to solve the dimensionality curse. These results show that the algorithm using the RBF kernel function for the SVM had the best classification properties.</p></div>","PeriodicalId":15315,"journal":{"name":"Journal of China University of Mining and Technology","volume":"18 3","pages":"Pages 327-331"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-1266(08)60069-3","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China University of Mining and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006126608600693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

A new method based on principal component analysis (PCA) and support vector machines (SVMs) is proposed for fault diagnosis of mine hoists. PCA is used to extract the principal features associated with the gearbox. Then, with the irrelevant gearbox variables removed, the remaining gearbox, the hydraulic system and the wire rope parameters were used as input to a multi-class SVM. The SVM is first trained by using the one class-based multi-class optimization algorithm and it is then applied to fault identification. Comparison of various methods showed the PCA-SVM method successfully removed redundancy to solve the dimensionality curse. These results show that the algorithm using the RBF kernel function for the SVM had the best classification properties.

基于主成分分析和支持向量机的矿井提升机故障诊断
提出一种基于主成分分析(PCA)和支持向量机(svm)的矿井提升机故障诊断方法。主成分分析用于提取与齿轮箱相关的主要特征。然后,剔除不相关的齿轮箱变量,将剩余的齿轮箱、液压系统和钢丝绳参数作为多类支持向量机的输入。首先使用基于一类的多类优化算法对支持向量机进行训练,然后将其应用于故障识别。各种方法的比较表明,PCA-SVM方法成功地消除了冗余,解决了维数诅咒问题。结果表明,采用RBF核函数作为支持向量机的算法具有最好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信