{"title":"Stretched exponential relaxation in systems with random free energies","authors":"C. Dominicis, H. Orland, F. Lainée","doi":"10.1051/JPHYSLET:019850046011046300","DOIUrl":null,"url":null,"abstract":"A spin glass phase is characterized by a large number of quasi degenerate states (or walley bottoms). Their free energies F a =F o +f a , where f a is a non extensive fluctuation, have recently been shown to be random independent variables, as in Derrida's model. Relaxation to equilibrium of such systems is considered and a simple approximation to the transition probability (in the master equation) is considered that leads to a (random) relaxation time τ∼expβΔF with −β(F o +ΔF)= In a Σexp(−βF a ). The ensuing relaxation to equilibrium is shown to be a stretched exponential a behaviour common to a wide class of materials. The dependence of the result on the particular choice of the transition probability is touched upon Etude des verres de spin, caracterises par un grand nombre d'etats (ou fonds de vallees) quasi degeneres, d'energies libres F a =F o +f a (ou fa est une fluctuation non extensive) se comportant en variables aleatoires independantes comme dans le modele de Derrida. Analyse de la relaxation vers l'equilibre a l'aide d'une approximation simple pour la probabilite de transition (dans l'equation maitresse) qui conduit a un temps de relaxation aleatoire τ∼exp βΔF[F o +ΔF)=log a Σexp(−βF a )","PeriodicalId":14822,"journal":{"name":"Journal De Physique Lettres","volume":"2000 1","pages":"463-466"},"PeriodicalIF":0.0000,"publicationDate":"1985-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Lettres","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYSLET:019850046011046300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
A spin glass phase is characterized by a large number of quasi degenerate states (or walley bottoms). Their free energies F a =F o +f a , where f a is a non extensive fluctuation, have recently been shown to be random independent variables, as in Derrida's model. Relaxation to equilibrium of such systems is considered and a simple approximation to the transition probability (in the master equation) is considered that leads to a (random) relaxation time τ∼expβΔF with −β(F o +ΔF)= In a Σexp(−βF a ). The ensuing relaxation to equilibrium is shown to be a stretched exponential a behaviour common to a wide class of materials. The dependence of the result on the particular choice of the transition probability is touched upon Etude des verres de spin, caracterises par un grand nombre d'etats (ou fonds de vallees) quasi degeneres, d'energies libres F a =F o +f a (ou fa est une fluctuation non extensive) se comportant en variables aleatoires independantes comme dans le modele de Derrida. Analyse de la relaxation vers l'equilibre a l'aide d'une approximation simple pour la probabilite de transition (dans l'equation maitresse) qui conduit a un temps de relaxation aleatoire τ∼exp βΔF[F o +ΔF)=log a Σexp(−βF a )
自旋玻璃相具有大量的准简并态(或瓦利底)。它们的自由能F =F o + F a,其中F a是一个非广泛的波动,最近被证明是随机的独立变量,就像德里达的模型一样。考虑了这类系统的平衡松弛,并考虑了转移概率(在主方程中)的简单近似,该近似导致(随机)松弛时间τ ~ expβΔF,其中−β(F o +ΔF)= in a Σexp(−βF a)。随后的松弛达到平衡被证明是一种被拉伸的指数行为,这是一种广泛的材料所共有的行为。结果对特定选择跃迁概率的依赖性涉及到Etude des verres de spin,特征parun grand nombre d'etats (ou fonds de vallees)准简并,d'energies libres F a =F o + F a (ou faest unextensive涨落),重要的两个变量是独立的,独立的comme dans le modele de Derrida。分析l'平衡和l'aide ' d'une近似的de la弛豫概率跃迁(dans l'equation maitresse) -管道和untemps de弛豫微分τ ~ exp βΔF[F o +ΔF)=log a Σexp(- βF a)