Current conduction mechanisms in thermal nitride and dry gate oxide grown on 4H-silicon carbide (SiC)

Q Chemistry
Li Liu, Yin-Tang Yang
{"title":"Current conduction mechanisms in thermal nitride and dry gate oxide grown on 4H-silicon carbide (SiC)","authors":"Li Liu, Yin-Tang Yang","doi":"10.1515/jaots-2016-0177","DOIUrl":null,"url":null,"abstract":"Abstract Current conduction mechanisms of SiC metal-oxide-semiconductor (MOS) capacitors on n-type 4H-SiC with or without NO annealing have been investigated in this work. It has been revealed that Fowler-Nordheim (FN) tunneling is the dominating current conduction mechanism in high electrical fields, with barrier height of 2.67 and 2.54 eV respectively for samples with NO and without NO annealing. A higher barrier height for NO-annealed sample indicates the effect of N element on the SiC/SiO2 interface quality. In the intermediate oxide field, instead of trap-assisted tunneling (TAT), Poole-Frenkel (PF) emission play the key role in this region. A combination of C-V characteristics also show us the advantages of NO annealing on the SiC/SiO2 characteristics.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Current conduction mechanisms of SiC metal-oxide-semiconductor (MOS) capacitors on n-type 4H-SiC with or without NO annealing have been investigated in this work. It has been revealed that Fowler-Nordheim (FN) tunneling is the dominating current conduction mechanism in high electrical fields, with barrier height of 2.67 and 2.54 eV respectively for samples with NO and without NO annealing. A higher barrier height for NO-annealed sample indicates the effect of N element on the SiC/SiO2 interface quality. In the intermediate oxide field, instead of trap-assisted tunneling (TAT), Poole-Frenkel (PF) emission play the key role in this region. A combination of C-V characteristics also show us the advantages of NO annealing on the SiC/SiO2 characteristics.
4h型碳化硅(SiC)上生长的热氮和干栅氧化物的电流传导机理
本文研究了n型4H-SiC SiC金属氧化物半导体(MOS)电容器在NO退火和NO退火条件下的电流传导机理。结果表明,在高电场条件下,Fowler-Nordheim (FN)隧穿是主要的电流传导机制,NO退火和NO未退火样品的势垒高度分别为2.67和2.54 eV。no退火样品的势垒高度较高,表明N元素对SiC/SiO2界面质量的影响。在中间氧化物场中,阱辅助隧穿(TAT)取代了普尔-弗伦克尔(PF)发射在该区域发挥了关键作用。C-V特性的结合也显示了NO退火对SiC/SiO2特性的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.88
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信