A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces

Pub Date : 2021-03-01 DOI:10.2478/auom-2021-0008
H. Khatibzadeh, Hadi Pouladi
{"title":"A Mean Ergodic Theorem for Affine Nonexpansive Mappings in Nonpositive Curvature Metric Spaces","authors":"H. Khatibzadeh, Hadi Pouladi","doi":"10.2478/auom-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the orbits of an affine nonexpansive mapping in Hadamard (nonpositive curvature metric) spaces and prove an ergodic theorem for the inductive mean, which extends the von Neumann linear ergodic theorem. The main result shows that the sequence given by the inductive means of iterations of an affine nonexpansive mapping with a nonempty fixed point set converges strongly to a fixed point of the mapping. A Tauberian theorem is also proved in order to ensure convergence of the iterations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we consider the orbits of an affine nonexpansive mapping in Hadamard (nonpositive curvature metric) spaces and prove an ergodic theorem for the inductive mean, which extends the von Neumann linear ergodic theorem. The main result shows that the sequence given by the inductive means of iterations of an affine nonexpansive mapping with a nonempty fixed point set converges strongly to a fixed point of the mapping. A Tauberian theorem is also proved in order to ensure convergence of the iterations.
分享
查看原文
非正曲率度量空间中仿射非扩张映射的平均遍历定理
摘要本文考虑Hadamard(非正曲率度量)空间中仿射非扩张映射的轨道,证明了归纳均值的一个遍历定理,它推广了von Neumann线性遍历定理。主要结果表明,具有非空不动点集的仿射非扩张映射的迭代归纳方法给出的序列强收敛于该映射的不动点集。为了保证迭代的收敛性,还证明了一个陶伯利定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信