PHASE-TYPE DISTRIBUTIONS FOR CLAIM SEVERITY REGRESSION MODELING

IF 1.8 3区 经济学 Q2 ECONOMICS
ASTIN Bulletin Pub Date : 2021-10-11 DOI:10.1017/asb.2021.40
Martin Bladt
{"title":"PHASE-TYPE DISTRIBUTIONS FOR CLAIM SEVERITY REGRESSION MODELING","authors":"Martin Bladt","doi":"10.1017/asb.2021.40","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses the task of modeling severity losses using segmentation when the data distribution does not fall into the usual regression frameworks. This situation is not uncommon in lines of business such as third-party liability insurance, where heavy-tails and multimodality often hamper a direct statistical analysis. We propose to use regression models based on phase-type distributions, regressing on their underlying inhomogeneous Markov intensity and using an extension of the expectation–maximization algorithm. These models are interpretable and tractable in terms of multistate processes and generalize the proportional hazards specification when the dimension of the state space is larger than 1. We show that the combination of matrix parameters, inhomogeneity transforms, and covariate information provides flexible regression models that effectively capture the entire distribution of loss severities.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"44 1","pages":"417 - 448"},"PeriodicalIF":1.8000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2021.40","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract This paper addresses the task of modeling severity losses using segmentation when the data distribution does not fall into the usual regression frameworks. This situation is not uncommon in lines of business such as third-party liability insurance, where heavy-tails and multimodality often hamper a direct statistical analysis. We propose to use regression models based on phase-type distributions, regressing on their underlying inhomogeneous Markov intensity and using an extension of the expectation–maximization algorithm. These models are interpretable and tractable in terms of multistate processes and generalize the proportional hazards specification when the dimension of the state space is larger than 1. We show that the combination of matrix parameters, inhomogeneity transforms, and covariate information provides flexible regression models that effectively capture the entire distribution of loss severities.
索赔严重性回归建模的阶段类型分布
摘要:本文解决了在数据分布不属于常规回归框架的情况下,使用分割方法对严重损失进行建模的问题。这种情况在第三方责任保险等业务领域并不罕见,在这些领域,笨重的尾巴和多模式往往妨碍直接的统计分析。我们建议使用基于相型分布的回归模型,对其潜在的非齐次马尔可夫强度进行回归,并使用期望最大化算法的扩展。这些模型具有多状态过程的可解释性和可处理性,并推广了状态空间维数大于1时的比例风险规范。我们表明,矩阵参数、非齐次变换和协变量信息的组合提供了灵活的回归模型,可以有效地捕获损失严重程度的整个分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ASTIN Bulletin
ASTIN Bulletin 数学-数学跨学科应用
CiteScore
3.20
自引率
5.30%
发文量
24
审稿时长
>12 weeks
期刊介绍: ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信