{"title":"A Nonlinear Permanent Magnet Working Point Migration Model and its Application to Simulation of a Polarized Magnetic Sys-tem.","authors":"J. You, X. Liao, R. Wang, H. Liang, J. Sykulski","doi":"10.1109/INTMAG.2018.8508236","DOIUrl":null,"url":null,"abstract":"The paper addresses the issue of the working point migration in non-linear permanent magnets (PM). Starting from the considerations of energy, a novel working-point migration model (WPM) is proposed which can be incorporated into a magnetic equivalent circuit (MEC). The static characteristic of a bistable polarized magnetic system (BPMS), as used in actuators, is calculated using the magnetic circuit method based on the WPM, while a finite element model (FEM) is also derived. The WPM based MEC model yields reasonable results, compared with FEM, of the latching force but with much faster calculation speeds. Furthermore, the working-point state of the PM is clearly illustrated. The test system of the BPMS prototype is established. It is shown that the WPM model provides accurate prediction of static characteristics of an electromagnetic system.","PeriodicalId":6571,"journal":{"name":"2018 IEEE International Magnetic Conference (INTERMAG)","volume":"112 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2018.8508236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper addresses the issue of the working point migration in non-linear permanent magnets (PM). Starting from the considerations of energy, a novel working-point migration model (WPM) is proposed which can be incorporated into a magnetic equivalent circuit (MEC). The static characteristic of a bistable polarized magnetic system (BPMS), as used in actuators, is calculated using the magnetic circuit method based on the WPM, while a finite element model (FEM) is also derived. The WPM based MEC model yields reasonable results, compared with FEM, of the latching force but with much faster calculation speeds. Furthermore, the working-point state of the PM is clearly illustrated. The test system of the BPMS prototype is established. It is shown that the WPM model provides accurate prediction of static characteristics of an electromagnetic system.