Multilevel Evaluation of the General Dirichlet Series

I. Suwan
{"title":"Multilevel Evaluation of the General Dirichlet Series","authors":"I. Suwan","doi":"10.31197/atnaa.810766","DOIUrl":null,"url":null,"abstract":"In this Study, an accurate method for summing the general Dirichlet series is presented. Long range terms of this series are calculated by a multilevel approach. The Dirichlet series, in this technique, is decomposed into two parts, a local part and a smooth part. The local part vanishes beyond some cut off distance, \"$r_0$\", and it can be cheaply computed . The complexity of calculations depends on $r_0$. The smooth part is calculated on a sequence of grids with increasing meshsize. Treating the smooth part using multilevels of grid points overcomes the high cost of calculating the long range terms. A high accuracy in approximating the smooth part is obtained with the same complexity of computing the local part. The method is tested on the Riemann Zeta function. Since there is no closed form for this function with odd integer orders, the method is applied for orders $s= 3, 5, 7,$ and $9$. In comparison with the direct calculations, remarkable results are obtained for $s=3$ and $s=5$; the reason is the major effect of the long range terms. For $s=7,$ and $s=9$, results obtained are better than those of direct calculations. The method is compared with efficient well known methods. The comparison shows the superiority of the multilevel method.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.810766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this Study, an accurate method for summing the general Dirichlet series is presented. Long range terms of this series are calculated by a multilevel approach. The Dirichlet series, in this technique, is decomposed into two parts, a local part and a smooth part. The local part vanishes beyond some cut off distance, "$r_0$", and it can be cheaply computed . The complexity of calculations depends on $r_0$. The smooth part is calculated on a sequence of grids with increasing meshsize. Treating the smooth part using multilevels of grid points overcomes the high cost of calculating the long range terms. A high accuracy in approximating the smooth part is obtained with the same complexity of computing the local part. The method is tested on the Riemann Zeta function. Since there is no closed form for this function with odd integer orders, the method is applied for orders $s= 3, 5, 7,$ and $9$. In comparison with the direct calculations, remarkable results are obtained for $s=3$ and $s=5$; the reason is the major effect of the long range terms. For $s=7,$ and $s=9$, results obtained are better than those of direct calculations. The method is compared with efficient well known methods. The comparison shows the superiority of the multilevel method.
一般狄利克雷级数的多级评价
本文给出了一种对一般狄利克雷级数求和的精确方法。该系列的长期项采用多层方法计算。在这种方法中,Dirichlet级数被分解为两个部分,局部部分和光滑部分。局部部分在某个截断距离“$r_0$”之外消失,并且可以便宜地计算。计算的复杂性取决于$r_0$。光滑部分在网格序列上计算,网格尺寸逐渐增大。使用多层网格点处理光滑部分克服了计算长范围项的高成本。在与局部部分计算相同的复杂度下,获得了较高的光滑部分逼近精度。该方法在Riemann Zeta函数上进行了测试。由于该函数不存在奇数阶的封闭形式,因此该方法适用于阶$s= 3,5,7,$和$9$。与直接计算结果相比,$s=3$和$s=5$的计算结果显著;原因是长期条款的主要影响。对于$s=7,$和$s=9$,所得结果优于直接计算。将该方法与有效的已知方法进行了比较。通过比较表明了多层方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信