Fire-hose instability of inhomogeneous plasma flows with heat fluxes

E. Uchava, A. Tevzadze, B. Shergelashvili, N. S. Dzhalilov, S. Poedts
{"title":"Fire-hose instability of inhomogeneous plasma flows with heat fluxes","authors":"E. Uchava, A. Tevzadze, B. Shergelashvili, N. S. Dzhalilov, S. Poedts","doi":"10.1063/5.0013490","DOIUrl":null,"url":null,"abstract":"We study the effects of heat flows and velocity shear on the parallel firehose instability in weakly collisional plasma flow. For this purpose we apply an anisotropic 16-moments MHD fluid closure model that takes into account the pressure and temperature anisotropy, as well as the effect of anisotropic heat flux. The linear stability analysis of the firehose modes is carried out in the incompressible limit, where the MHD flow is parallel to the background magnetic field, while the velocity is sheared in the direction transverse to the flow direction. It seems that an increase of the velocity shear parameter leads to higher growth rates of the firehose instability. The increase of the instability growth rate is most profound for perturbations with oblique wave-numbers $k_{\\perp}/k_{\\parallel} < 1$. The heat flux parameter introduces an asymmetry of the instability growth in the shear plane: perturbations with wave-vectors with a component in the direction of the velocity shear grow significantly stronger as compared to those with components in the opposite direction. We discuss the implications of the presented study on the observable features of the solar wind and possible measurements of local parameters of the solar wind based on the stability constraints set by the firehose instability.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0013490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the effects of heat flows and velocity shear on the parallel firehose instability in weakly collisional plasma flow. For this purpose we apply an anisotropic 16-moments MHD fluid closure model that takes into account the pressure and temperature anisotropy, as well as the effect of anisotropic heat flux. The linear stability analysis of the firehose modes is carried out in the incompressible limit, where the MHD flow is parallel to the background magnetic field, while the velocity is sheared in the direction transverse to the flow direction. It seems that an increase of the velocity shear parameter leads to higher growth rates of the firehose instability. The increase of the instability growth rate is most profound for perturbations with oblique wave-numbers $k_{\perp}/k_{\parallel} < 1$. The heat flux parameter introduces an asymmetry of the instability growth in the shear plane: perturbations with wave-vectors with a component in the direction of the velocity shear grow significantly stronger as compared to those with components in the opposite direction. We discuss the implications of the presented study on the observable features of the solar wind and possible measurements of local parameters of the solar wind based on the stability constraints set by the firehose instability.
带热通量的非均匀等离子体流的消防水带不稳定性
研究了弱碰撞等离子体流中热流和速度剪切对平行火水带不稳定性的影响。为此,我们采用了考虑压力和温度各向异性以及各向异性热流的影响的各向异性16矩MHD流体封闭模型。在不可压缩极限下,MHD流平行于背景磁场,速度沿流方向横向剪切,进行了消防水带模态的线性稳定性分析。随着速度剪切参数的增大,消防水带失稳的增长率也相应增大。当斜波数$k_{\perp}/k_{\parallel} < 1$时,不稳定增长率的增加最为显著。热通量参数引入了剪切面不稳定性增长的不对称性:与速度剪切方向分量的波矢量的扰动比与速度剪切方向相反分量的扰动强得多。我们讨论了所提出的研究对太阳风的可观测特征的影响,以及基于火龙不稳定性所设定的稳定性约束的太阳风局部参数的可能测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信