Higher arity self-distributive operations in Cascades and their cohomology

M. Elhamdadi, M. Saito, E. Zappala
{"title":"Higher arity self-distributive operations in Cascades and their cohomology","authors":"M. Elhamdadi, M. Saito, E. Zappala","doi":"10.1142/s0219498821501164","DOIUrl":null,"url":null,"abstract":"We investigate constructions of higher arity self-distributive operations, and give relations between cohomology groups corresponding to operations of different arities. For this purpose we introduce the notion of mutually distributive $n$-ary operations generalizing those for the binary case, and define a cohomology theory labeled by these operations. A geometric interpretation in terms of framed links is described, with the scope of providing algebraic background of constructing $2$-cocycles for framed link invariants. This theory is also studied in the context of symmetric monoidal categories. Examples from Lie algebras, coalgebras and Hopf algebras are given.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498821501164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We investigate constructions of higher arity self-distributive operations, and give relations between cohomology groups corresponding to operations of different arities. For this purpose we introduce the notion of mutually distributive $n$-ary operations generalizing those for the binary case, and define a cohomology theory labeled by these operations. A geometric interpretation in terms of framed links is described, with the scope of providing algebraic background of constructing $2$-cocycles for framed link invariants. This theory is also studied in the context of symmetric monoidal categories. Examples from Lie algebras, coalgebras and Hopf algebras are given.
级联中的高密度自分布运算及其上同调
研究了高次数自分布运算的构造,给出了不同次数运算对应的上同调群之间的关系。为此,我们引入了互分配的n元运算的概念,推广了二元情况下的n元运算,并定义了一个用这些运算标记的上同调理论。描述了框架连杆的几何解释,并提供了构造框架连杆不变量$2$-环的代数背景。这一理论也在对称一元范畴的背景下进行了研究。给出了李代数、余代数和Hopf代数的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信