On Three Polynomials of Cyclic Silicate Networks

Mohammed Salaheldeen Abdelgader, Osama Said Ahmed Abdallah, S. A. Mohammed
{"title":"On Three Polynomials of Cyclic Silicate Networks","authors":"Mohammed Salaheldeen Abdelgader, Osama Said Ahmed Abdallah, S. A. Mohammed","doi":"10.1109/ICCCEEE.2018.8515828","DOIUrl":null,"url":null,"abstract":"Let a graph $G = (V, E)$ is a simple graph with vertex set V such that, $|V| =n.$ A $D(G, x)=\\sum _{i=\\gamma (G)}^{n}d(G, i)x^{i}$ is a domination polynomial of G, where $d(G, i)$ is the number of dominating sets of size i in G. ADi $(G, x)=\\sum _{J}^{n} d_{i}(G, j)x^{J}$' is an independent domination polynomial of G, where $d_{i}(G, j)$ is the number of independent dominating sets of size j in G. $\\mathrm {A} D_{t}(G, x)=\\sum _{i=\\gamma _{t}(G)}^{n}d_{t}(G, i)x^{i}$ is a total domination polynomial of G, where $d_{t}(G, i)$ is the number of total dominating sets of size i in G. In this work we studied $D(G, x)$, $D_{i}(G, x)$ and $D_{t}(G, x)$, and introduced some of their properties. Further, these polynomials for cyclic silicate network are computed.","PeriodicalId":6567,"journal":{"name":"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","volume":"65 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCEEE.2018.8515828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let a graph $G = (V, E)$ is a simple graph with vertex set V such that, $|V| =n.$ A $D(G, x)=\sum _{i=\gamma (G)}^{n}d(G, i)x^{i}$ is a domination polynomial of G, where $d(G, i)$ is the number of dominating sets of size i in G. ADi $(G, x)=\sum _{J}^{n} d_{i}(G, j)x^{J}$' is an independent domination polynomial of G, where $d_{i}(G, j)$ is the number of independent dominating sets of size j in G. $\mathrm {A} D_{t}(G, x)=\sum _{i=\gamma _{t}(G)}^{n}d_{t}(G, i)x^{i}$ is a total domination polynomial of G, where $d_{t}(G, i)$ is the number of total dominating sets of size i in G. In this work we studied $D(G, x)$, $D_{i}(G, x)$ and $D_{t}(G, x)$, and introduced some of their properties. Further, these polynomials for cyclic silicate network are computed.
关于循环硅酸盐网络的三个多项式
设图$G = (V, E)$是一个顶点集V的简单图,其如下:$|V| =n.$ a $D(G, x)=\sum _{i=\gamma (G)}^{n}d(G, i)x^{i}$是G的一个控制多项式,其中$d(G, i)$是G中大小为i的控制集的个数。ADi $(G, x)=\sum _{J}^{n} d_{i}(G, j)x^{J}$ '是G的一个独立控制多项式,其中$d_{i}(G, j)$是G中大小为j的独立控制集的个数。$\mathrm {A} D_{t}(G, x)=\sum _{i=\gamma _{t}(G)}^{n}d_{t}(G, i)x^{i}$是G的一个总控制多项式,其中$d_{t}(G, i)$为g中大小为i的支配集的总数。本文研究了$D(G, x)$、$D_{i}(G, x)$和$D_{t}(G, x)$,并介绍了它们的一些性质。进一步,计算了循环硅酸盐网络的这些多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信