{"title":"Links Between HX-Groups and Hypergroups","authors":"I. Cristea, M. Novák, B. Onasanya","doi":"10.1142/s1005386721000341","DOIUrl":null,"url":null,"abstract":"The concept of an [Formula: see text]-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an [Formula: see text]-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an [Formula: see text]-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, [Formula: see text]-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an [Formula: see text]-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The concept of an [Formula: see text]-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an [Formula: see text]-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an [Formula: see text]-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, [Formula: see text]-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an [Formula: see text]-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.