Links Between HX-Groups and Hypergroups

Pub Date : 2021-09-01 DOI:10.1142/s1005386721000341
I. Cristea, M. Novák, B. Onasanya
{"title":"Links Between HX-Groups and Hypergroups","authors":"I. Cristea, M. Novák, B. Onasanya","doi":"10.1142/s1005386721000341","DOIUrl":null,"url":null,"abstract":"The concept of an [Formula: see text]-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an [Formula: see text]-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an [Formula: see text]-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, [Formula: see text]-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an [Formula: see text]-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386721000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The concept of an [Formula: see text]-group is an upgrade of the concept of a group, in which a new operation is defined on the family of non-empty subsets of a group. If this new support set together with the new operation is a group, then we call it an [Formula: see text]-group. On the other hand, a hyperoperation is a mapping having the same codomain as the operation of an [Formula: see text]-group, i.e., the family of non-empty subsets of the initial set, but a different domain — the set itself. This could be (and was indeed) a source of confusion, which is clarified in this paper. Moreover, [Formula: see text]-groups naturally lead to constructions of hypergroups. The links between these two algebraic concepts are presented, with the aim of reviving the old notion of an [Formula: see text]-group in the current research on algebraic hyperstructures. One of such existing links and one newly established link are also discussed.
分享
查看原文
hx - group和hypergroup之间的链路
群的概念是对群概念的升级,在群的非空子集族上定义了一个新的运算。如果这个新的支持集和新的操作是一个组,那么我们称它为[公式:见文本]-组。另一方面,超运算是一种映射,它与一个[公式:见文本]群的运算具有相同的上域,即初始集合的非空子集族,但具有不同的域-集合本身。这可能是(而且确实是)混淆的根源,本文对此进行了澄清。此外,[公式:见文本]群自然导致超群的构造。提出了这两个代数概念之间的联系,目的是在当前代数超结构的研究中复兴一个[公式:见文本]群的旧概念。并对其中一个现有环节和一个新建立的环节进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信