Formation of the hierarchical porous structure and surface morphology in the micro-arc calcium phosphate coatings

E. Komarova, V. Chebodaeva, I. Khlusov, L. Litvinova, Y. Sharkeev
{"title":"Formation of the hierarchical porous structure and surface morphology in the micro-arc calcium phosphate coatings","authors":"E. Komarova, V. Chebodaeva, I. Khlusov, L. Litvinova, Y. Sharkeev","doi":"10.1063/1.5132034","DOIUrl":null,"url":null,"abstract":"The study of the formation of the hierarchically organized porous structure and surface morphology, as well as phase and elemental compositions of the calcium phosphate (CaP) coatings deposited by the micro-arc oxidation (MAO) method under varied applied voltage (200-300 V) was performed. The increase of the MAO voltage led to the linear increase of the coating thickness (50-100 µm), surface average roughness (3.0-7.5 µm), surface porosity (20-35%) and sizes of the structural elements (spheres and pores). In addition, the increase in the voltage led to the structural-phase transformation in the coatings from the amorphous state to the amorphous-crystalline state with incorporation of CaHPO4 and β-Ca2P2O7 phases. The elemental composition of the CaP coatings did not significantly depend on the applied voltage value, however, the Ca content and Ca/P atomic ratio increased with increasing of the voltage. Thus, the MAO technique allows to form on the metal substrate the CaP coatings with specific physicochemical, and structural properties influencing the behavior of stromal stem cells and bone tissue regeneration.The study of the formation of the hierarchically organized porous structure and surface morphology, as well as phase and elemental compositions of the calcium phosphate (CaP) coatings deposited by the micro-arc oxidation (MAO) method under varied applied voltage (200-300 V) was performed. The increase of the MAO voltage led to the linear increase of the coating thickness (50-100 µm), surface average roughness (3.0-7.5 µm), surface porosity (20-35%) and sizes of the structural elements (spheres and pores). In addition, the increase in the voltage led to the structural-phase transformation in the coatings from the amorphous state to the amorphous-crystalline state with incorporation of CaHPO4 and β-Ca2P2O7 phases. The elemental composition of the CaP coatings did not significantly depend on the applied voltage value, however, the Ca content and Ca/P atomic ratio increased with increasing of the voltage. Thus, the MAO technique allows to form on the metal substrate the CaP coatings with specific physicochemi...","PeriodicalId":20637,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5132034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of the formation of the hierarchically organized porous structure and surface morphology, as well as phase and elemental compositions of the calcium phosphate (CaP) coatings deposited by the micro-arc oxidation (MAO) method under varied applied voltage (200-300 V) was performed. The increase of the MAO voltage led to the linear increase of the coating thickness (50-100 µm), surface average roughness (3.0-7.5 µm), surface porosity (20-35%) and sizes of the structural elements (spheres and pores). In addition, the increase in the voltage led to the structural-phase transformation in the coatings from the amorphous state to the amorphous-crystalline state with incorporation of CaHPO4 and β-Ca2P2O7 phases. The elemental composition of the CaP coatings did not significantly depend on the applied voltage value, however, the Ca content and Ca/P atomic ratio increased with increasing of the voltage. Thus, the MAO technique allows to form on the metal substrate the CaP coatings with specific physicochemical, and structural properties influencing the behavior of stromal stem cells and bone tissue regeneration.The study of the formation of the hierarchically organized porous structure and surface morphology, as well as phase and elemental compositions of the calcium phosphate (CaP) coatings deposited by the micro-arc oxidation (MAO) method under varied applied voltage (200-300 V) was performed. The increase of the MAO voltage led to the linear increase of the coating thickness (50-100 µm), surface average roughness (3.0-7.5 µm), surface porosity (20-35%) and sizes of the structural elements (spheres and pores). In addition, the increase in the voltage led to the structural-phase transformation in the coatings from the amorphous state to the amorphous-crystalline state with incorporation of CaHPO4 and β-Ca2P2O7 phases. The elemental composition of the CaP coatings did not significantly depend on the applied voltage value, however, the Ca content and Ca/P atomic ratio increased with increasing of the voltage. Thus, the MAO technique allows to form on the metal substrate the CaP coatings with specific physicochemi...
微弧磷酸钙涂层中分层多孔结构的形成及其表面形貌
研究了不同电压(200 ~ 300 V)下微弧氧化法制备的磷酸钙(CaP)涂层的层状多孔结构的形成、表面形貌以及物相和元素组成。此外,电压的升高导致涂层的结构相变,由非晶态转变为非晶态,并掺入CaHPO4和β-Ca2P2O7相。镀层的元素组成对外加电压的影响不显著,但Ca含量和Ca/P原子比随外加电压的增加而增加。研究了不同电压(200 ~ 300 V)下微弧氧化法制备的磷酸钙(CaP)涂层的层状多孔结构的形成、表面形貌以及物相和元素组成。此外,电压的升高导致涂层的结构相变,由非晶态转变为非晶态,并掺入CaHPO4和β-Ca2P2O7相。镀层的元素组成对外加电压的影响不显著,但Ca含量和Ca/P原子比随外加电压的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信