Shear Behavior of Reinforced Concrete Inverted-T Deep Beam

Q3 Engineering
H. Shousha, R. Mabrouk, A. Torkey
{"title":"Shear Behavior of Reinforced Concrete Inverted-T Deep Beam","authors":"H. Shousha, R. Mabrouk, A. Torkey","doi":"10.28991/cej-2023-09-05-04","DOIUrl":null,"url":null,"abstract":"Contrary to top-loaded deep beams, Inverted-T (IT) deep beams are loaded on ledges at the beam’s bottom chord. The presence of the load near the bottom of the beams creates a tension field in the web at the loading points. An experimental investigation was carried out in which 8 specimens of reinforced concrete IT deep beams were tested and the effect of the following variables was studied: changing the hanger diameter, hanger arrangement in terms of spacing and distribution distance, hanger reinforcement ratio, vertical and horizontal web shear reinforcement diameter, and spacing. In addition, all the tested beams had long ledges extending to the end of the beam. It was concluded that hanger reinforcement diameter and horizontal web shear reinforcement have an insignificant effect on the IT deep beam capacity. While the change in hanger arrangement, vertical web reinforcement, and ledge length has a significant effect on IT deep beam capacity. The maximum spacing of the hanger reinforcement and the minimum hanger reinforcement ratio passing through the load plate length will be studied in the following publication. A finite element model (FEM) was presented to predict the behavior of IT deep beams. The simulation was carried out using the ABAQUS 2017 software program. The results of the numerical model showed good agreement with the experimental program. Analysis using design codes was checked against the experimental data, where the computed beam capacities were compared to those obtained from the test results. The comparison showed a remarkable difference between the predictions using the design codes and the test results. Computation using design codes significantly underestimated the capacities of the beams. Doi: 10.28991/CEJ-2023-09-05-04 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-05-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Contrary to top-loaded deep beams, Inverted-T (IT) deep beams are loaded on ledges at the beam’s bottom chord. The presence of the load near the bottom of the beams creates a tension field in the web at the loading points. An experimental investigation was carried out in which 8 specimens of reinforced concrete IT deep beams were tested and the effect of the following variables was studied: changing the hanger diameter, hanger arrangement in terms of spacing and distribution distance, hanger reinforcement ratio, vertical and horizontal web shear reinforcement diameter, and spacing. In addition, all the tested beams had long ledges extending to the end of the beam. It was concluded that hanger reinforcement diameter and horizontal web shear reinforcement have an insignificant effect on the IT deep beam capacity. While the change in hanger arrangement, vertical web reinforcement, and ledge length has a significant effect on IT deep beam capacity. The maximum spacing of the hanger reinforcement and the minimum hanger reinforcement ratio passing through the load plate length will be studied in the following publication. A finite element model (FEM) was presented to predict the behavior of IT deep beams. The simulation was carried out using the ABAQUS 2017 software program. The results of the numerical model showed good agreement with the experimental program. Analysis using design codes was checked against the experimental data, where the computed beam capacities were compared to those obtained from the test results. The comparison showed a remarkable difference between the predictions using the design codes and the test results. Computation using design codes significantly underestimated the capacities of the beams. Doi: 10.28991/CEJ-2023-09-05-04 Full Text: PDF
钢筋混凝土倒t型深梁抗剪性能研究
与顶荷载深梁相反,倒t型深梁是在梁的底部弦架上荷载的。靠近梁底部的荷载在腹板的荷载点处产生张力场。通过8个钢筋混凝土IT深梁试件的试验研究,研究了改变吊架直径、吊架布置间距和分布距离、吊架配筋率、纵横腹板剪力配筋直径和间距对吊架直径的影响。此外,所有测试梁都有延伸到梁末端的长壁架。结果表明,吊架配筋直径和水平腹板剪力配筋对It深梁承载力影响不显著。吊架布置方式、腹板竖向配筋和壁架长度的变化对IT深梁承载力有显著影响。吊架加固的最大间距和通过荷载板长度的最小吊架加固比将在下面的出版物中进行研究。提出了一种预测IT深梁性能的有限元模型。采用ABAQUS 2017软件程序进行仿真。数值模拟结果与实验结果吻合较好。使用设计规范的分析与实验数据进行了核对,其中计算的梁容量与从测试结果中获得的梁容量进行了比较。比较表明,采用设计规范的预测结果与试验结果之间存在显著差异。使用设计规范的计算大大低估了梁的能力。Doi: 10.28991/CEJ-2023-09-05-04全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信