Improved pseudorandomness for unordered branching programs through local monotonicity

Eshan Chattopadhyay, P. Hatami, Omer Reingold, Avishay Tal
{"title":"Improved pseudorandomness for unordered branching programs through local monotonicity","authors":"Eshan Chattopadhyay, P. Hatami, Omer Reingold, Avishay Tal","doi":"10.1145/3188745.3188800","DOIUrl":null,"url":null,"abstract":"We present an explicit pseudorandom generator with seed length Õ((logn)w+1) for read-once, oblivious, width w branching programs that can read their input bits in any order. This improves upon the work of Impagliazzo, Meka and Zuckerman (FOCS’12) where they required seed length n1/2+o(1). A central ingredient in our work is the following bound that we prove on the Fourier spectrum of branching programs. For any width w read-once, oblivious branching program B:{0,1}n→ {0,1}, any k ∈ {1,…,n}, [complex formula not displayed] This settles a conjecture posed by Reingold, Steinke and Vadhan (RANDOM’13). Our analysis crucially uses a notion of local monotonicity on the edge labeling of the branching program. We carry critical parts of our proof under the assumption of local monotonicity and show how to deduce our results for unrestricted branching programs.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We present an explicit pseudorandom generator with seed length Õ((logn)w+1) for read-once, oblivious, width w branching programs that can read their input bits in any order. This improves upon the work of Impagliazzo, Meka and Zuckerman (FOCS’12) where they required seed length n1/2+o(1). A central ingredient in our work is the following bound that we prove on the Fourier spectrum of branching programs. For any width w read-once, oblivious branching program B:{0,1}n→ {0,1}, any k ∈ {1,…,n}, [complex formula not displayed] This settles a conjecture posed by Reingold, Steinke and Vadhan (RANDOM’13). Our analysis crucially uses a notion of local monotonicity on the edge labeling of the branching program. We carry critical parts of our proof under the assumption of local monotonicity and show how to deduce our results for unrestricted branching programs.
利用局部单调性改进无序分支程序的伪随机性
我们提出了一个显式伪随机生成器,其种子长度为Õ((logn)w+1),用于读取一次,无关的,宽度为w的分支程序,可以以任何顺序读取其输入位。这改进了Impagliazzo, Meka和Zuckerman (FOCS ' 12)的工作,他们要求种子长度为n1/2+o(1)。我们工作中的一个核心成分是我们在分支程序的傅立叶谱上证明的下一个界。对于任意宽度w读一次,无关分支程序B:{0,1}n→{0,1},任意k∈{1,…,n},[复公式未显示],这解决了Reingold, Steinke和Vadhan (RANDOM ' 13)提出的一个猜想。我们的分析关键是在分支程序的边缘标记上使用了局部单调性的概念。我们在局部单调假设下给出了证明的关键部分,并给出了如何推导出无限制分支规划的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信