{"title":"Nonlinear vibrational and rotational analysis of microbeams in nanobiomaterials using Galerkin decomposition and differential transform methods","authors":"O. Adeleye, A. Atitebi, A. Yinusa","doi":"10.32973/jcam.2021.001","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear vibrational and rotational analysis of microbeams in nanobiomaterials using Galerkin Decomposition (GDM) and Differential Transform Methods (DTM) is presented. The dependency of cell migration and growth on nanoscaffold porosity and pore size architecture in tissue regeneration is governed by a dynamic model for the nonlinear vibration and rotation of the microbeams of nanobiomaterials and represented by a set of nonlinear partial differential equations. The solutions of the governing model are obtained by applying GDM and DTM and good agreement is achieved with numerical Runge-Kutta method (RK4). From the results, it is observed that an increase in Duffing term resulted in the increase of the frequency of the micro-beam. An increase in the foundation term also resulted in a corresponding increase in the frequency of the system for both free and forced dynamic responses. This study will enhance the application of tissue engineering in the regeneration of damaged human body tissues.","PeriodicalId":47168,"journal":{"name":"Journal of Applied and Computational Mechanics","volume":"79 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32973/jcam.2021.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a nonlinear vibrational and rotational analysis of microbeams in nanobiomaterials using Galerkin Decomposition (GDM) and Differential Transform Methods (DTM) is presented. The dependency of cell migration and growth on nanoscaffold porosity and pore size architecture in tissue regeneration is governed by a dynamic model for the nonlinear vibration and rotation of the microbeams of nanobiomaterials and represented by a set of nonlinear partial differential equations. The solutions of the governing model are obtained by applying GDM and DTM and good agreement is achieved with numerical Runge-Kutta method (RK4). From the results, it is observed that an increase in Duffing term resulted in the increase of the frequency of the micro-beam. An increase in the foundation term also resulted in a corresponding increase in the frequency of the system for both free and forced dynamic responses. This study will enhance the application of tissue engineering in the regeneration of damaged human body tissues.
期刊介绍:
The Journal of Applied and Computational Mechanics aims to provide a medium for dissemination of innovative and consequential papers on mathematical and computational methods in theoretical as well as applied mechanics. Manuscripts submitted to the journal undergo a blind peer reviewing procedure conducted by the editorial board. The Journal of Applied and Computational Mechanics devoted to the all fields of solid and fluid mechanics. The journal also welcomes papers that are related to the recent technological advances such as biomechanics, electro-mechanics, advanced materials and micor/nano-mechanics. The scope of the journal includes, but is not limited to, the following topic areas: -Theoretical and experimental mechanics- Dynamic systems & control- Nonlinear dynamics and chaos- Boundary layer theory- Turbulence and hydrodynamic stability- Multiphase flows- Heat and mass transfer- Micro/Nano-mechanics- Structural optimization- Smart materials and applications- Composite materials- Hydro- and aerodynamics- Fluid-structure interaction- Gas dynamics