Theoretical and numerical analysis of a chaotic model with nonlocal and stochastic differential operators

IF 2.2 Q1 MATHEMATICS, APPLIED
I. Koca, A. Atangana
{"title":"Theoretical and numerical analysis of a chaotic model with nonlocal and stochastic differential operators","authors":"I. Koca, A. Atangana","doi":"10.11121/ijocta.2023.1398","DOIUrl":null,"url":null,"abstract":"A set of nonlinear ordinary differential equations has been considered in this paper. The work tries to establish some theoretical and analytical insights when the usual time-deferential operator is replaced with the Caputo fractional derivative. Using the Caratheodory principle and other additional conditions, we established that the system has a unique system of solutions. A variety of well-known approaches were used to investigate the system. The stochastic version of this system was solved using a numerical approach based on Lagrange interpolation, and numerical simulation results were produced.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"104 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

A set of nonlinear ordinary differential equations has been considered in this paper. The work tries to establish some theoretical and analytical insights when the usual time-deferential operator is replaced with the Caputo fractional derivative. Using the Caratheodory principle and other additional conditions, we established that the system has a unique system of solutions. A variety of well-known approaches were used to investigate the system. The stochastic version of this system was solved using a numerical approach based on Lagrange interpolation, and numerical simulation results were produced.
非局部随机微分算子混沌模型的理论与数值分析
本文研究了一类非线性常微分方程。当通常的时变算子被卡普托分数阶导数取代时,本文试图建立一些理论和分析的见解。利用卡拉多原理和其他附加条件,我们确定了该系统具有唯一的解系统。我们使用了各种众所周知的方法来研究这个系统。采用基于拉格朗日插值的数值方法对该系统的随机版本进行了求解,并给出了数值模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信