Reflecting Algebraically Compact Functors

Vladimir Zamdzhiev
{"title":"Reflecting Algebraically Compact Functors","authors":"Vladimir Zamdzhiev","doi":"10.4204/EPTCS.323.2","DOIUrl":null,"url":null,"abstract":"A compact T-algebra is an initial T-algebra whose inverse is a final T-coalgebra. Functors with this property are said to be algebraically compact. This is a very strong property used in programming semantics which allows one to interpret recursive datatypes involving mixed-variance functors, such as function space. The construction of compact algebras is usually done in categories with a zero object where some form of a limit-colimit coincidence exists. In this paper we consider a more abstract approach and show how one can construct compact algebras in categories which have neither a zero object, nor a (standard) limit-colimit coincidence by reflecting the compact algebras from categories which have both. In doing so, we provide a constructive description of a large class of algebraically compact functors (satisfying a compositionality principle) and show our methods compare quite favorably to other approaches from the literature.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"6 1","pages":"15-23"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.323.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A compact T-algebra is an initial T-algebra whose inverse is a final T-coalgebra. Functors with this property are said to be algebraically compact. This is a very strong property used in programming semantics which allows one to interpret recursive datatypes involving mixed-variance functors, such as function space. The construction of compact algebras is usually done in categories with a zero object where some form of a limit-colimit coincidence exists. In this paper we consider a more abstract approach and show how one can construct compact algebras in categories which have neither a zero object, nor a (standard) limit-colimit coincidence by reflecting the compact algebras from categories which have both. In doing so, we provide a constructive description of a large class of algebraically compact functors (satisfying a compositionality principle) and show our methods compare quite favorably to other approaches from the literature.
反映代数紧函子
紧t代数是一个初始t代数,它的逆是一个最终t协代数。具有这种性质的函子被称为代数紧的。这是编程语义中使用的一个非常强大的属性,它允许解释涉及混合方差函子的递归数据类型,例如函数空间。紧代数的构造通常在具有零对象的范畴中进行,其中存在某种形式的极限-极限重合。在本文中,我们考虑了一种更抽象的方法,并展示了如何在既没有零对象,也没有(标准)极限-极限重合的范畴中构造紧代数,通过反映具有这两者的范畴中的紧代数。在这样做的过程中,我们提供了一大类代数紧函子(满足组合性原则)的建设性描述,并表明我们的方法与文献中的其他方法相比相当有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信