An extension of the Erdős-Ko-Rado theorem to uniform set partitions

Karen Meagher, M. N. Shirazi, B. Stevens
{"title":"An extension of the Erdős-Ko-Rado theorem to uniform set partitions","authors":"Karen Meagher, M. N. Shirazi, B. Stevens","doi":"10.26493/1855-3974.2698.6fe","DOIUrl":null,"url":null,"abstract":"A $(k,\\ell)$-partition is a set partition which has $\\ell$ blocks each of size $k$. Two uniform set partitions $P$ and $Q$ are said to be partially $t$-intersecting if there exist blocks $P_{i}$ in $P$ and $Q_{j}$ in $Q$ such that $\\left| P_{i} \\cap Q_{j} \\right|\\geq t$. In this paper we prove a version of the Erd\\H{o}s-Ko-Rado theorem for partially $2$-intersecting $(k,\\ell)$-partitions. In particular, we show for $\\ell$ sufficiently large, the set of all $(k,\\ell)$-partitions in which a block contains a fixed pair is the largest set of 2-partially intersecting $(k,\\ell)$-partitions. For for $k=3$, we show this result holds for all $\\ell$.","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2698.6fe","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A $(k,\ell)$-partition is a set partition which has $\ell$ blocks each of size $k$. Two uniform set partitions $P$ and $Q$ are said to be partially $t$-intersecting if there exist blocks $P_{i}$ in $P$ and $Q_{j}$ in $Q$ such that $\left| P_{i} \cap Q_{j} \right|\geq t$. In this paper we prove a version of the Erd\H{o}s-Ko-Rado theorem for partially $2$-intersecting $(k,\ell)$-partitions. In particular, we show for $\ell$ sufficiently large, the set of all $(k,\ell)$-partitions in which a block contains a fixed pair is the largest set of 2-partially intersecting $(k,\ell)$-partitions. For for $k=3$, we show this result holds for all $\ell$.
Erdős-Ko-Rado定理在一致集分区上的推广
$(k,\ell)$ -partition是一个集合分区,它有$\ell$个块,每个块的大小为$k$。如果$P$中存在$P_{i}$块,$Q$中存在$Q_{j}$块,则两个统一的集合分区$P$和$Q$被称为部分$t$相交,从而导致$\left| P_{i} \cap Q_{j} \right|\geq t$。本文证明了部分$2$ -相交$(k,\ell)$ -分区的Erd \H{o} s-Ko-Rado定理的一个版本。特别地,我们展示了对于$\ell$足够大,所有$(k,\ell)$ -分区的集合(其中一个块包含固定对)是2部分相交的$(k,\ell)$ -分区的最大集合。对于$k=3$,我们显示此结果适用于所有$\ell$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信