Conditions for Energy Efficient Heat Supply Based on the Transformed Heat of Soil and Air Flows

Q3 Energy
V. Petrash, O. Khomenko, D. V. Basist, A. V. Golubenko
{"title":"Conditions for Energy Efficient Heat Supply Based on the Transformed Heat of Soil and Air Flows","authors":"V. Petrash, O. Khomenko, D. V. Basist, A. V. Golubenko","doi":"10.21122/1029-7448-2023-66-3-260-272","DOIUrl":null,"url":null,"abstract":"Based on the analysis of thermohydraulic processes and the structural and functional structure of the proposed system of heat and cold supply of buildings, a multifactorial dependence of the actual conversion coefficient was established to assess the efficiency of transformation of the heat taken from the soil massif and ventilation air. It allows modeling the individual influence of the initial parameters and operational modes of the system in the search for rational conditions for the highly efficient use of energy flows for heat and cooling supply of buildings during the corresponding periods of the year. The results of a qualitative assessment of the multifactorial interrelation of the actual conversion coefficient substantiated the possibility of energy efficient operation of the analyzed system, which is provided under the design conditions of the heating period when the ratio of circulating flow rate through the evaporator and condenser of heat pump is higher than 1.8, which is rational for sports, recreation, shopping and entertainment complexes. The improved structural and functional arrangement of the system based on a binary low-temperature source increases the efficiency of vapor compression transformation of energy flows, indirectly confirming the advisability of maximizing the use of the energy potential of ventilation air during the year with a corresponding accumulation of excess heat in the soil mass, and, consequently, the possibility of reducing the depth of expensive wells or the number of probe heat exchangers.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2023-66-3-260-272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the analysis of thermohydraulic processes and the structural and functional structure of the proposed system of heat and cold supply of buildings, a multifactorial dependence of the actual conversion coefficient was established to assess the efficiency of transformation of the heat taken from the soil massif and ventilation air. It allows modeling the individual influence of the initial parameters and operational modes of the system in the search for rational conditions for the highly efficient use of energy flows for heat and cooling supply of buildings during the corresponding periods of the year. The results of a qualitative assessment of the multifactorial interrelation of the actual conversion coefficient substantiated the possibility of energy efficient operation of the analyzed system, which is provided under the design conditions of the heating period when the ratio of circulating flow rate through the evaporator and condenser of heat pump is higher than 1.8, which is rational for sports, recreation, shopping and entertainment complexes. The improved structural and functional arrangement of the system based on a binary low-temperature source increases the efficiency of vapor compression transformation of energy flows, indirectly confirming the advisability of maximizing the use of the energy potential of ventilation air during the year with a corresponding accumulation of excess heat in the soil mass, and, consequently, the possibility of reducing the depth of expensive wells or the number of probe heat exchangers.
基于土壤和空气流动热转化的高效供热条件
在分析热水力过程和建筑冷热供系统的结构与功能结构的基础上,建立了实际转换系数的多因子依赖关系,以评估土壤和通风空气中热量的转换效率。它允许对系统的初始参数和运行模式的个别影响进行建模,以寻找合理的条件,以便在一年中相应时期高效地利用能源流为建筑物供热和供冷。对实际换算系数的多因子相互关系进行定性评价的结果证实了所分析系统在热泵蒸发器与冷凝器循环流量之比大于1.8的采暖期设计条件下节能运行的可能性,该设计条件对于体育、休闲、购物和娱乐综合设施来说是合理的。基于二元低温源的系统结构和功能安排的改进提高了能量流的蒸汽压缩转化效率,间接证实了在土体中积累相应的余热的情况下,最大限度地利用全年通风空气的能量潜力的可行性,从而有可能减少昂贵井的深度或探头换热器的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信