{"title":"On involution kernels and large deviations principles on $ \\beta $-shifts","authors":"V. Vargas","doi":"10.3934/dcds.2021208","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Consider <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\beta > 1 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\lfloor \\beta \\rfloor $\\end{document}</tex-math></inline-formula> its integer part. It is widely known that any real number <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\alpha \\in \\Bigl[0, \\frac{\\lfloor \\beta \\rfloor}{\\beta - 1}\\Bigr] $\\end{document}</tex-math></inline-formula> can be represented in base <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula> using a development in series of the form <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\alpha = \\sum_{n = 1}^\\infty x_n\\beta^{-n} $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M7\">\\begin{document}$ x = (x_n)_{n \\geq 1} $\\end{document}</tex-math></inline-formula> is a sequence taking values into the alphabet <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\{0,\\; ...\\; ,\\; \\lfloor \\beta \\rfloor\\} $\\end{document}</tex-math></inline-formula>. The so called <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula>-shift, denoted by <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\Sigma_\\beta $\\end{document}</tex-math></inline-formula>, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id=\"M12\">\\begin{document}$ 1 $\\end{document}</tex-math></inline-formula>. Fixing a Hölder continuous potential <inline-formula><tex-math id=\"M13\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula>, we show an explicit expression for the main eigenfunction of the Ruelle operator <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\psi_A $\\end{document}</tex-math></inline-formula>, in order to obtain a natural extension to the bilateral <inline-formula><tex-math id=\"M15\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula>-shift of its corresponding Gibbs state <inline-formula><tex-math id=\"M16\">\\begin{document}$ \\mu_A $\\end{document}</tex-math></inline-formula>. Our main goal here is to prove a first level large deviations principle for the family <inline-formula><tex-math id=\"M17\">\\begin{document}$ (\\mu_{tA})_{t>1} $\\end{document}</tex-math></inline-formula> with a rate function <inline-formula><tex-math id=\"M18\">\\begin{document}$ I $\\end{document}</tex-math></inline-formula> attaining its maximum value on the union of the supports of all the maximizing measures of <inline-formula><tex-math id=\"M19\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula>. The above is proved through a technique using the representation of <inline-formula><tex-math id=\"M20\">\\begin{document}$ \\Sigma_\\beta $\\end{document}</tex-math></inline-formula> and its bilateral extension <inline-formula><tex-math id=\"M21\">\\begin{document}$ \\widehat{\\Sigma_\\beta} $\\end{document}</tex-math></inline-formula> in terms of the quasi-greedy <inline-formula><tex-math id=\"M22\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id=\"M23\">\\begin{document}$ 1 $\\end{document}</tex-math></inline-formula> and the so called involution kernel associated to the potential <inline-formula><tex-math id=\"M24\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"191 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Consider \begin{document}$ \beta > 1 $\end{document} and \begin{document}$ \lfloor \beta \rfloor $\end{document} its integer part. It is widely known that any real number \begin{document}$ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $\end{document} can be represented in base \begin{document}$ \beta $\end{document} using a development in series of the form \begin{document}$ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $\end{document}, where \begin{document}$ x = (x_n)_{n \geq 1} $\end{document} is a sequence taking values into the alphabet \begin{document}$ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $\end{document}. The so called \begin{document}$ \beta $\end{document}-shift, denoted by \begin{document}$ \Sigma_\beta $\end{document}, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy \begin{document}$ \beta $\end{document}-expansion of \begin{document}$ 1 $\end{document}. Fixing a Hölder continuous potential \begin{document}$ A $\end{document}, we show an explicit expression for the main eigenfunction of the Ruelle operator \begin{document}$ \psi_A $\end{document}, in order to obtain a natural extension to the bilateral \begin{document}$ \beta $\end{document}-shift of its corresponding Gibbs state \begin{document}$ \mu_A $\end{document}. Our main goal here is to prove a first level large deviations principle for the family \begin{document}$ (\mu_{tA})_{t>1} $\end{document} with a rate function \begin{document}$ I $\end{document} attaining its maximum value on the union of the supports of all the maximizing measures of \begin{document}$ A $\end{document}. The above is proved through a technique using the representation of \begin{document}$ \Sigma_\beta $\end{document} and its bilateral extension \begin{document}$ \widehat{\Sigma_\beta} $\end{document} in terms of the quasi-greedy \begin{document}$ \beta $\end{document}-expansion of \begin{document}$ 1 $\end{document} and the so called involution kernel associated to the potential \begin{document}$ A $\end{document}.
Consider \begin{document}$ \beta > 1 $\end{document} and \begin{document}$ \lfloor \beta \rfloor $\end{document} its integer part. It is widely known that any real number \begin{document}$ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $\end{document} can be represented in base \begin{document}$ \beta $\end{document} using a development in series of the form \begin{document}$ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $\end{document}, where \begin{document}$ x = (x_n)_{n \geq 1} $\end{document} is a sequence taking values into the alphabet \begin{document}$ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $\end{document}. The so called \begin{document}$ \beta $\end{document}-shift, denoted by \begin{document}$ \Sigma_\beta $\end{document}, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy \begin{document}$ \beta $\end{document}-expansion of \begin{document}$ 1 $\end{document}. Fixing a Hölder continuous potential \begin{document}$ A $\end{document}, we show an explicit expression for the main eigenfunction of the Ruelle operator \begin{document}$ \psi_A $\end{document}, in order to obtain a natural extension to the bilateral \begin{document}$ \beta $\end{document}-shift of its corresponding Gibbs state \begin{document}$ \mu_A $\end{document}. Our main goal here is to prove a first level large deviations principle for the family \begin{document}$ (\mu_{tA})_{t>1} $\end{document} with a rate function \begin{document}$ I $\end{document} attaining its maximum value on the union of the supports of all the maximizing measures of \begin{document}$ A $\end{document}. The above is proved through a technique using the representation of \begin{document}$ \Sigma_\beta $\end{document} and its bilateral extension \begin{document}$ \widehat{\Sigma_\beta} $\end{document} in terms of the quasi-greedy \begin{document}$ \beta $\end{document}-expansion of \begin{document}$ 1 $\end{document} and the so called involution kernel associated to the potential \begin{document}$ A $\end{document}.