{"title":"Carrier dynamics in intermediate states of InAs/GaAs quantum dots embedded in photonic cavity structure","authors":"T. Kita, T. Maeda, Y. Harada","doi":"10.1109/pvsc-vol2.2012.6656710","DOIUrl":null,"url":null,"abstract":"We have studied time-resolved intraband transition from the intermediate state to the continuum state of the conduction band in InAs/GaAs self-assembled quantum dots (QDs) embedded in a one-dimensional photonic cavity structure using a two-color photoexcitation spectroscopy. The photonic gap was tuned to enhance the excitation from the intermediate state to the conduction band, whose energy is selected to be less than the interband transition energy between the intermediate state and the quantized hole state. The photoluminescence intensity was observed to be dramatically reduced by selectively pumping carriers in the intermediate state. This effect has been analyzed by modeling detailed carrier relaxation process.","PeriodicalId":6420,"journal":{"name":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","volume":"51 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc-vol2.2012.6656710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have studied time-resolved intraband transition from the intermediate state to the continuum state of the conduction band in InAs/GaAs self-assembled quantum dots (QDs) embedded in a one-dimensional photonic cavity structure using a two-color photoexcitation spectroscopy. The photonic gap was tuned to enhance the excitation from the intermediate state to the conduction band, whose energy is selected to be less than the interband transition energy between the intermediate state and the quantized hole state. The photoluminescence intensity was observed to be dramatically reduced by selectively pumping carriers in the intermediate state. This effect has been analyzed by modeling detailed carrier relaxation process.