The impact of flow induced by rotating magnetic fields on processes in a molten conductive medium

R. Khalilov, A. Mamykin, R. Okatev, I. Kolesnichenko
{"title":"The impact of flow induced by rotating magnetic fields on processes in a molten conductive medium","authors":"R. Khalilov, A. Mamykin, R. Okatev, I. Kolesnichenko","doi":"10.17804/2410-9908.2023.3.006-016","DOIUrl":null,"url":null,"abstract":"This paper studies a method of stirring liquid metal by the action of rotating magnetic fields using two ring inductors placed next to each other. These inductors generate magnetic fields rotating in opposite directions. The aim of this study is numerical investigation of the generated fluid flow and its impact on the homogenization of a two-phase medium, as well as on the crystallization process. The impact of these electromagnetic forces proves to cause the generation of intense poloidal flow component. The arising flow is accompanied by oscillatory motion of vortex structures and their interaction resulting in effective mixing of the liquid metal. The moderate values of the force parameter have been found to lead to the most homogeneous medium under stirring. Under non-stationary action, the force parameter modulations in a certain frequency range have practically no effect on the homogeneity occurrence time and the homogeneity value. The positive effect of stirring by magnetic fields of complex topology on the rate and homogeneity of metal solidification is stated. The obtained results are relevant for improving the quality of foundry ingots.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2023.3.006-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a method of stirring liquid metal by the action of rotating magnetic fields using two ring inductors placed next to each other. These inductors generate magnetic fields rotating in opposite directions. The aim of this study is numerical investigation of the generated fluid flow and its impact on the homogenization of a two-phase medium, as well as on the crystallization process. The impact of these electromagnetic forces proves to cause the generation of intense poloidal flow component. The arising flow is accompanied by oscillatory motion of vortex structures and their interaction resulting in effective mixing of the liquid metal. The moderate values of the force parameter have been found to lead to the most homogeneous medium under stirring. Under non-stationary action, the force parameter modulations in a certain frequency range have practically no effect on the homogeneity occurrence time and the homogeneity value. The positive effect of stirring by magnetic fields of complex topology on the rate and homogeneity of metal solidification is stated. The obtained results are relevant for improving the quality of foundry ingots.
由旋转磁场引起的流动对熔融导电介质过程的影响
本文研究了一种利用两个相邻的环形电感器在旋转磁场的作用下搅拌液态金属的方法。这些电感器产生反向旋转的磁场。本研究的目的是数值研究产生的流体流动及其对两相介质均质化和结晶过程的影响。事实证明,这些电磁力的影响导致了强烈的极向流分量的产生。产生的流动伴随着涡结构的振荡运动及其相互作用,导致液态金属的有效混合。适中的力参数值可以使介质在搅拌过程中达到最均匀的状态。在非平稳作用下,一定频率范围内的力参数调制对均匀性发生时间和均匀性值几乎没有影响。阐述了复合拓扑磁场搅拌对金属凝固速度和均匀性的积极影响。所得结果对提高铸锭质量具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信