Privacy Attacks on Schedule-Driven Data

Stephan A. Fahrenkrog-Petersen, Arik Senderovich, Alexandra Tichauer, Ali Kaan Tutak, J. Christopher Beck, M. Weidlich
{"title":"Privacy Attacks on Schedule-Driven Data","authors":"Stephan A. Fahrenkrog-Petersen, Arik Senderovich, Alexandra Tichauer, Ali Kaan Tutak, J. Christopher Beck, M. Weidlich","doi":"10.1609/aaai.v37i10.26412","DOIUrl":null,"url":null,"abstract":"Schedules define how resources process jobs in diverse domains, reaching from healthcare to transportation, and, therefore, denote a valuable starting point for analysis of the underlying system. However, publishing a schedule may disclose private information on the considered jobs. In this paper, we provide a first threat model for published schedules, thereby defining a completely new class of data privacy problems. We then propose distance-based measures to assess the privacy loss incurred by a published schedule, and show their theoretical properties for an uninformed adversary, which can be used as a benchmark for informed attacks. We show how an informed attack on a published schedule can be phrased as an inverse scheduling problem. We instantiate this idea by formulating the inverse of a well-studied single-machine scheduling problem, namely minimizing the total weighted completion times. An empirical evaluation for synthetic scheduling problems shows the effectiveness of informed privacy attacks and compares the results to theoretical bounds on uninformed attacks.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"115 1","pages":"11972-11979"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i10.26412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Schedules define how resources process jobs in diverse domains, reaching from healthcare to transportation, and, therefore, denote a valuable starting point for analysis of the underlying system. However, publishing a schedule may disclose private information on the considered jobs. In this paper, we provide a first threat model for published schedules, thereby defining a completely new class of data privacy problems. We then propose distance-based measures to assess the privacy loss incurred by a published schedule, and show their theoretical properties for an uninformed adversary, which can be used as a benchmark for informed attacks. We show how an informed attack on a published schedule can be phrased as an inverse scheduling problem. We instantiate this idea by formulating the inverse of a well-studied single-machine scheduling problem, namely minimizing the total weighted completion times. An empirical evaluation for synthetic scheduling problems shows the effectiveness of informed privacy attacks and compares the results to theoretical bounds on uninformed attacks.
对计划驱动数据的隐私攻击
调度定义了资源如何处理从医疗保健到交通运输等不同领域的作业,因此为底层系统的分析指明了一个有价值的起点。然而,发布时间表可能会泄露考虑的工作的私人信息。在本文中,我们提供了第一个威胁模型,从而定义了一类全新的数据隐私问题。然后,我们提出了基于距离的度量来评估公布的时间表所导致的隐私损失,并展示了它们对不知情对手的理论性质,这可以用作知情攻击的基准。我们将展示如何将对已发布调度的知情攻击表述为逆调度问题。我们通过制定一个研究得很好的单机调度问题的逆来实例化这个思想,即最小化总加权完成时间。对综合调度问题的经验评估表明了知情隐私攻击的有效性,并将结果与不知情攻击的理论边界进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信