Analysis of separating acoustics from the thermoacoustic system of methane combustion based on Reynolds-averaged Navier-Stokes and linearized Navier-Stokes equations
{"title":"Analysis of separating acoustics from the thermoacoustic system of methane combustion based on Reynolds-averaged Navier-Stokes and linearized Navier-Stokes equations","authors":"Yaorui Shen, Jianqin Fu, Jing-ping Liu","doi":"10.1177/14613484231174860","DOIUrl":null,"url":null,"abstract":"A model coupling Reynolds-averaged Navier-Stokes (RANS) method and linearized Navier-Stokes equations (LNSEs) was established in order to investigate the acoustic excitation and attenuation effect from a coupling perspective of time–space–frequency under various flow velocities and mass fractions of methane. Results show that the energy distribution of acoustic modes under high-frequency acoustic excitation is more uniform. The amplitude of the acoustic oscillation at a multiple coupling physical field is 10,000 times higher than that at simple flow field. The case when w C H 4 = 0.8 owns the largest percentage of energy conversion from fundamental to high-frequency signals, the largest percentage of transmitted waves from the combustion chamber system to outside and the strongest non-linear effect. When w C H 4 rises, the amplitude of oscillations at points and the attenuation effect of high-frequency signals along the axial are enhanced. At the case of Uin = 15 m/s, the amplitude of harmonics is reduced by 18% compared with other cases, while the proportion of the high-frequency harmonic increases, proving the non-linearity cannot be neglected in this case. As velocity rises, the energy conversion from fundamental to high-frequency signals enhances; while closer to the outlet position, the more complex the oscillation signal is. Model-shapes analysis shows that a case of w C H 4 = 0.8 owns the largest amplitude of the second harmonic at downstream of the burner, while the amplitude of the harmonics rapidly increases at Uin = 15 m/s at the end of the burner, which further indicates that the energy conversion of low-frequency signals to high-frequency signals occurs mainly in the middle and downstream regions.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":"20 1","pages":"1035 - 1054"},"PeriodicalIF":2.8000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231174860","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
A model coupling Reynolds-averaged Navier-Stokes (RANS) method and linearized Navier-Stokes equations (LNSEs) was established in order to investigate the acoustic excitation and attenuation effect from a coupling perspective of time–space–frequency under various flow velocities and mass fractions of methane. Results show that the energy distribution of acoustic modes under high-frequency acoustic excitation is more uniform. The amplitude of the acoustic oscillation at a multiple coupling physical field is 10,000 times higher than that at simple flow field. The case when w C H 4 = 0.8 owns the largest percentage of energy conversion from fundamental to high-frequency signals, the largest percentage of transmitted waves from the combustion chamber system to outside and the strongest non-linear effect. When w C H 4 rises, the amplitude of oscillations at points and the attenuation effect of high-frequency signals along the axial are enhanced. At the case of Uin = 15 m/s, the amplitude of harmonics is reduced by 18% compared with other cases, while the proportion of the high-frequency harmonic increases, proving the non-linearity cannot be neglected in this case. As velocity rises, the energy conversion from fundamental to high-frequency signals enhances; while closer to the outlet position, the more complex the oscillation signal is. Model-shapes analysis shows that a case of w C H 4 = 0.8 owns the largest amplitude of the second harmonic at downstream of the burner, while the amplitude of the harmonics rapidly increases at Uin = 15 m/s at the end of the burner, which further indicates that the energy conversion of low-frequency signals to high-frequency signals occurs mainly in the middle and downstream regions.
期刊介绍:
Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.