Excitation of pairing vibrations in superfluid nuclei

IF 0.4 Q4 PHYSICS, NUCLEAR
V. Abrosimov
{"title":"Excitation of pairing vibrations in superfluid nuclei","authors":"V. Abrosimov","doi":"10.15407/jnpae2022.04.223","DOIUrl":null,"url":null,"abstract":"Excitation of monopole pairing vibrations in superfluid nuclei in the two-neutron transfer reaction is studied within a kinetic model based on the semiclassical time-dependent Hartree - Fock - Bogolyubov theory. Using the anomalous (correlated) density response function, the monopole pairing mode and the amplitude of the dynamic variation of the pairing gap associated with this mode are obtained. It is shown that the pairing correlations give a coherent contribution to the spectroscopic factor for the excitation of monopole pairing vibrations in the two-neutron transfer reaction in superfluid nuclei. The contribution is determined by the distribution of neutron levels near the Fermi energy and does not exceed a few percent of the spectroscopic factor for the transfer of two neutrons to the ground state. This estimate is in agreement with experimental data for the ratio of the cross-section for excitation of the 0+-state in the (p, t)-reaction in the energy region of the monopole pairing mode, which is equal to the double pairing gap, to the cross section for excitation of the ground state in superfluid nuclei.","PeriodicalId":42588,"journal":{"name":"Nuclear Physics and Atomic Energy","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics and Atomic Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/jnpae2022.04.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Excitation of monopole pairing vibrations in superfluid nuclei in the two-neutron transfer reaction is studied within a kinetic model based on the semiclassical time-dependent Hartree - Fock - Bogolyubov theory. Using the anomalous (correlated) density response function, the monopole pairing mode and the amplitude of the dynamic variation of the pairing gap associated with this mode are obtained. It is shown that the pairing correlations give a coherent contribution to the spectroscopic factor for the excitation of monopole pairing vibrations in the two-neutron transfer reaction in superfluid nuclei. The contribution is determined by the distribution of neutron levels near the Fermi energy and does not exceed a few percent of the spectroscopic factor for the transfer of two neutrons to the ground state. This estimate is in agreement with experimental data for the ratio of the cross-section for excitation of the 0+-state in the (p, t)-reaction in the energy region of the monopole pairing mode, which is equal to the double pairing gap, to the cross section for excitation of the ground state in superfluid nuclei.
超流体核中配对振动的激发
基于半经典时变Hartree - Fock - Bogolyubov理论的动力学模型,研究了双中子转移反应中超流体核中单极子对振动的激发。利用异常(相关)密度响应函数,得到了单极子配对模式以及与此模式相关的配对间隙的动态变化幅度。结果表明,在超流体核中双中子转移反应中,偶相关对激发单极子偶振动的光谱因子有相干贡献。贡献是由费米能量附近中子能级的分布决定的,并且不超过两个中子向基态转移的光谱因子的百分之几。这一估计与单极子配对模式能量区(p, t)-反应中(p, t)态激发截面与超流核中基态激发截面之比的实验数据一致,该截面等于双配对间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
10
审稿时长
19 weeks
期刊介绍: The journal Nuclear Physics and Atomic Energy presents the publications on Nuclear Physics, Atomic Energy, Radiation Physics, Radioecology, Engineering and Methods of Experiment. The journal includes peer-reviewed articles which are completed works containing new results of theoretical and experimental researches and are of interest for the scientists, postgraduate students, engineers and for the senior students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信