Prime Representing Polynomial with 10 Unknowns – Introduction

IF 1 Q1 MATHEMATICS
Karol Pąk
{"title":"Prime Representing Polynomial with 10 Unknowns – Introduction","authors":"Karol Pąk","doi":"10.2478/forma-2022-0013","DOIUrl":null,"url":null,"abstract":"Summary The main purpose of the article is to construct a sophisticated polynomial proposed by Matiyasevich and Robinson [5] that is often used to reduce the number of unknowns in diophantine representations, using the Mizar [1], [2] formalism. The polynomial Jk(a1,…,ak,x)=∏ɛ1,…,ɛk∈{ ±1 }(x+ɛ1a1+ɛ2a2W)+…+ɛkakWk-1 {J_k}\\left( {{a_1}, \\ldots ,{a_k},x} \\right) = \\prod\\limits_{{\\varepsilon _1}, \\ldots ,{\\varepsilon _k} \\in \\left\\{ { \\pm 1} \\right\\}} {\\left( {x + {\\varepsilon _1}\\sqrt {{a_1}} + {\\varepsilon _2}\\sqrt {{a_2}} W} \\right) + \\ldots + {\\varepsilon _k}\\sqrt {{a_k}} {W^{k - 1}}} with W=∑i=1kx i2 W = \\sum\\nolimits_{i = 1}^k {x_i^2} has integer coefficients and Jk(a1, . . ., ak, x) = 0 for some a1, . . ., ak, x ∈ ℤ if and only if a1, . . ., ak are all squares. However although it is nontrivial to observe that this expression is a polynomial, i.e., eliminating similar elements in the product of all combinations of signs we obtain an expression where every square root will occur with an even power. This work has been partially presented in [7].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Summary The main purpose of the article is to construct a sophisticated polynomial proposed by Matiyasevich and Robinson [5] that is often used to reduce the number of unknowns in diophantine representations, using the Mizar [1], [2] formalism. The polynomial Jk(a1,…,ak,x)=∏ɛ1,…,ɛk∈{ ±1 }(x+ɛ1a1+ɛ2a2W)+…+ɛkakWk-1 {J_k}\left( {{a_1}, \ldots ,{a_k},x} \right) = \prod\limits_{{\varepsilon _1}, \ldots ,{\varepsilon _k} \in \left\{ { \pm 1} \right\}} {\left( {x + {\varepsilon _1}\sqrt {{a_1}} + {\varepsilon _2}\sqrt {{a_2}} W} \right) + \ldots + {\varepsilon _k}\sqrt {{a_k}} {W^{k - 1}}} with W=∑i=1kx i2 W = \sum\nolimits_{i = 1}^k {x_i^2} has integer coefficients and Jk(a1, . . ., ak, x) = 0 for some a1, . . ., ak, x ∈ ℤ if and only if a1, . . ., ak are all squares. However although it is nontrivial to observe that this expression is a polynomial, i.e., eliminating similar elements in the product of all combinations of signs we obtain an expression where every square root will occur with an even power. This work has been partially presented in [7].
素数表示有10个未知数的多项式-介绍
本文的主要目的是构建一个由Matiyasevich和Robinson[5]提出的复杂多项式,该多项式通常用于使用Mizar[1],[2]形式主义来减少吐芬图表示中的未知数数量。多项式Jk(a1,…,ak,x)=∏æ 1,…,æ k∈{±1} (x+ æ 1a1+ æ 2a2W)+…+ æ kakWk-1 {J_k}\left ({{a_1}, \ldots,{a_k},x }\right)= \prod\limits _ {{\varepsilon _1, }\ldots,{\varepsilon _k }\in\left {{\pm 1 }\right} }{\left ({x +{\varepsilon _1 }\sqrt a_1{{ + }}{\varepsilon _2 }\sqrt a_2{{ W }}}\right) + \ldots + {\varepsilon _k }\sqrt a_k{{ W^}}k - 1 {with W=∑i=1kx i2 W={}}}\sum\nolimits _i =1{ ^k x_i^2}具有整数系数,并且Jk(a1,…,ak, x) = 0对于某些a1,…,ak, x∈0当且仅当a1,…,ak都是平方。然而,尽管观察到这个表达式是一个多项式是很重要的,也就是说,在所有符号组合的乘积中消除相似的元素,我们得到一个表达式,其中每个平方根都以偶数次方出现。这项工作已在b[7]中部分介绍。{}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信