{"title":"H-principle for complex contact structures on Stein manifolds","authors":"F. Forstnerič","doi":"10.4310/JSG.2020.V18.N3.A4","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\\Omega\\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\\mathscr C^2$ in arbitrary complex manifolds.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"73 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N3.A4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\Omega\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\mathscr C^2$ in arbitrary complex manifolds.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.