Estimating location parameters in sample-heterogeneous distributions

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Ankit Pensia, Varun Jog, Po-Ling Loh
{"title":"Estimating location parameters in sample-heterogeneous distributions","authors":"Ankit Pensia, Varun Jog, Po-Ling Loh","doi":"10.1093/IMAIAI/IAAB013","DOIUrl":null,"url":null,"abstract":"Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statistics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In this paper, we consider the problem of mean estimation when independent samples are drawn from ddimensional non-identical distributions possessing a common mean. When the distributions are radially symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth, and median estimators, and whose performance adapts to the level of heterogeneity in the data. We show that our estimator is near-optimal when data are i.i.d. and when the fraction of “low-noise” distributions is as small as Ω ( d logn n ) , where n is the number of samples. We also derive minimax lower bounds on the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we extend our theory to linear regression. In both the mean estimation and regression settings, we present computationally feasible versions of our estimators that run in time polynomial in the number of data points.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"73 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/IMAIAI/IAAB013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statistics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In this paper, we consider the problem of mean estimation when independent samples are drawn from ddimensional non-identical distributions possessing a common mean. When the distributions are radially symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth, and median estimators, and whose performance adapts to the level of heterogeneity in the data. We show that our estimator is near-optimal when data are i.i.d. and when the fraction of “low-noise” distributions is as small as Ω ( d logn n ) , where n is the number of samples. We also derive minimax lower bounds on the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we extend our theory to linear regression. In both the mean estimation and regression settings, we present computationally feasible versions of our estimators that run in time polynomial in the number of data points.
估计样本异质分布中的位置参数
利用i.i.d样本估计概率分布的均值是统计学中的一个经典问题,其中在各种分布假设下寻求有限样本最优估计。本文研究了从具有共同均值的非同维分布中抽取独立样本的均值估计问题。当分布是径向对称和单峰分布时,我们提出了一种新的估计器,它是模态区间估计器、短估计器和中值估计器的混合,其性能适应数据的异质性水平。我们表明,当数据是i.i.d并且“低噪声”分布的比例小到Ω (d logn)时,我们的估计器是接近最优的,其中n是样本数。我们还推导出与单个数据点的尺度无关的任何估计器的期望误差的极小极大下界。最后,我们将我们的理论扩展到线性回归。在均值估计和回归设置中,我们提出了计算上可行的估计器版本,这些估计器以数据点数量的时间多项式运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信