Comparative study of different Fuzzy-Neural configurations for autonomous vehicle following algorithm

John Paolo A. Ramoso, M. Ramos
{"title":"Comparative study of different Fuzzy-Neural configurations for autonomous vehicle following algorithm","authors":"John Paolo A. Ramoso, M. Ramos","doi":"10.1109/ICCSCE.2016.7893609","DOIUrl":null,"url":null,"abstract":"This paper investigates modelling vehicle following using Fuzzy-Neural Network (FNN). Architecture, training sets, and learning rate are manipulated to create 24 combinations of FNN. Generating two sets of weights per combination yields 48 simulations. Acceleration and deceleration profiles from seven electrical tricycles are observed while navigating through the University of the Philippines. A force equation has been applied to simulate vehicular dynamics. Each combination is then subjected to test run simulations to examine vehicular reactions to distance maintenance, velocity matching, and change in applied force to the vehicle. Results show that two 2 hidden layer FN and two NN allow a vehicle to successfully follow a lead vehicle.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"19 1","pages":"413-418"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates modelling vehicle following using Fuzzy-Neural Network (FNN). Architecture, training sets, and learning rate are manipulated to create 24 combinations of FNN. Generating two sets of weights per combination yields 48 simulations. Acceleration and deceleration profiles from seven electrical tricycles are observed while navigating through the University of the Philippines. A force equation has been applied to simulate vehicular dynamics. Each combination is then subjected to test run simulations to examine vehicular reactions to distance maintenance, velocity matching, and change in applied force to the vehicle. Results show that two 2 hidden layer FN and two NN allow a vehicle to successfully follow a lead vehicle.
不同模糊神经网络配置在自动驾驶车辆跟随算法中的比较研究
本文研究了用模糊神经网络(FNN)建立车辆跟随模型。结构、训练集和学习率被操纵来创建24种FNN的组合。每个组合生成两组权重可以产生48次模拟。在菲律宾大学导航时,观察了七辆电动三轮车的加速和减速曲线。应用力方程对车辆动力学进行了模拟。然后对每种组合进行测试运行模拟,以检查车辆对距离维护,速度匹配和施加在车辆上的力的变化的反应。结果表明,两个2隐层FN和两个NN可以使车辆成功地跟随前导车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信