{"title":"Hierarchical platinum nanostructure for the non-enzymatic detection of glucose by amperometry and impedance analysis","authors":"T. Unmussig, P. Daubinger, J. Kieninger, G. Urban","doi":"10.1109/TRANSDUCERS.2015.7181242","DOIUrl":null,"url":null,"abstract":"High sensitivity, selectivity and stability of a nonenzymatic glucose sensor were achieved by the combination of hierarchical platinum nanostructures with a sophisticated measurement scheme. The amperometric sensitivity of up to 1 mA·cm-2·mM-1 is the highest reported sensitivity for a non-enzymatic glucose sensor in neutral pH media. The selectivity towards glucose can be enhanced beyond the contribution of the nanostructure itself by the unique combination of the hierarchical nanostructure and low frequency impedance analysis. Additionally the long-time stability of the sensor was improved by using a chronoamperometric protocol to reactivate the electrode surface continuously.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High sensitivity, selectivity and stability of a nonenzymatic glucose sensor were achieved by the combination of hierarchical platinum nanostructures with a sophisticated measurement scheme. The amperometric sensitivity of up to 1 mA·cm-2·mM-1 is the highest reported sensitivity for a non-enzymatic glucose sensor in neutral pH media. The selectivity towards glucose can be enhanced beyond the contribution of the nanostructure itself by the unique combination of the hierarchical nanostructure and low frequency impedance analysis. Additionally the long-time stability of the sensor was improved by using a chronoamperometric protocol to reactivate the electrode surface continuously.