{"title":"Double-absorber thin-film solar cell with 34% efficiency","authors":"Faiz Ahmad, A. Lakhtakia, P. Monk","doi":"10.1063/5.0017916","DOIUrl":null,"url":null,"abstract":"Power-conversion efficiency is a critical factor for the wider adoption of solar-cell modules. Thin-film solar cells are cheap and easy to manufacture, but their efficiencies are low compared to crystalline-silicon solar cells and need to be improved. A thin-film solar cell with two absorber layers (instead of only one), with bandgap energy graded in both, can capture solar photons in a wider spectral range. With a 300-nm-thick CIGS~absorber layer and an 870-nm-thick CZTSSe~absorber layer, an efficiency of $34.45\\%$ is predicted by a detailed optoelectronic model, provided that the grading of bandgap energy is optimal in both absorber layers.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0017916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Power-conversion efficiency is a critical factor for the wider adoption of solar-cell modules. Thin-film solar cells are cheap and easy to manufacture, but their efficiencies are low compared to crystalline-silicon solar cells and need to be improved. A thin-film solar cell with two absorber layers (instead of only one), with bandgap energy graded in both, can capture solar photons in a wider spectral range. With a 300-nm-thick CIGS~absorber layer and an 870-nm-thick CZTSSe~absorber layer, an efficiency of $34.45\%$ is predicted by a detailed optoelectronic model, provided that the grading of bandgap energy is optimal in both absorber layers.