{"title":"A low-swing crossbar and link generator for low-power networks-on-chip","authors":"C. Chen, Sunghyun Park, T. Krishna, L. Peh","doi":"10.1109/ICCAD.2011.6105418","DOIUrl":null,"url":null,"abstract":"Networks-on-Chip (NoCs) are emerging as the answer to non-scalable buses for connecting multiple cores in Chip Multi Processors (CMPs), and multiple IP blocks in Multi Processor Systems-on-Chip (MPSoCs). These networks require an extremely low-power datapath to ensure sustained scalability, and higher performance/watt. Crossbars and links form the core of a network datapath, and integrating low-swing links within these will reduce power significantly. Low-swing links however require significant custom circuit design effort to deliver good power efficiency and high bit rate, in the face of noise. As a result, low-swing links have not been able to make it to mainstream chips which rely on crossbar and link generators from RTL. In this paper, we present a datapath generator that creates automated layouts for crossbars with noise-robust low-swing links within them. To the best of our knowledge, this is the first crossbar generator that (1) creates layouts, instead of generating just synthesizable RTL; and (2) integrates noise-robust low-swing links in an automated manner. We demonstrate our generated datapath in a fully-synthesized NoC router, and observe 50% power reduction on datapath.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"31 1","pages":"779-786"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Networks-on-Chip (NoCs) are emerging as the answer to non-scalable buses for connecting multiple cores in Chip Multi Processors (CMPs), and multiple IP blocks in Multi Processor Systems-on-Chip (MPSoCs). These networks require an extremely low-power datapath to ensure sustained scalability, and higher performance/watt. Crossbars and links form the core of a network datapath, and integrating low-swing links within these will reduce power significantly. Low-swing links however require significant custom circuit design effort to deliver good power efficiency and high bit rate, in the face of noise. As a result, low-swing links have not been able to make it to mainstream chips which rely on crossbar and link generators from RTL. In this paper, we present a datapath generator that creates automated layouts for crossbars with noise-robust low-swing links within them. To the best of our knowledge, this is the first crossbar generator that (1) creates layouts, instead of generating just synthesizable RTL; and (2) integrates noise-robust low-swing links in an automated manner. We demonstrate our generated datapath in a fully-synthesized NoC router, and observe 50% power reduction on datapath.