Transparent Polynomial Delegation and Its Applications to Zero Knowledge Proof

Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, D. Song
{"title":"Transparent Polynomial Delegation and Its Applications to Zero Knowledge Proof","authors":"Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, D. Song","doi":"10.1109/SP40000.2020.00052","DOIUrl":null,"url":null,"abstract":"We present a new succinct zero knowledge argument scheme for layered arithmetic circuits without trusted setup. The prover time is O(C + nlogn) and the proof size is O(D logC +log2 n) for a D-depth circuit with n inputs and C gates. The verification time is also succinct, O(D logC + log2 n), if the circuit is structured. Our scheme only uses lightweight cryptographic primitives such as collision-resistant hash functions and is plausibly post-quantum secure. We implement a zero knowledge argument system, Virgo, based on our new scheme and compare its performance to existing schemes. Experiments show that it only takes 53 seconds to generate a proof for a circuit computing a Merkle tree with 256 leaves, at least an order of magnitude faster than all other succinct zero knowledge argument schemes. The verification time is 50ms, and the proof size is 253KB, both competitive to existing systems.Underlying Virgo is a new transparent zero knowledge verifiable polynomial delegation scheme with logarithmic proof size and verification time. The scheme is in the interactive oracle proof model and may be of independent interest.","PeriodicalId":6849,"journal":{"name":"2020 IEEE Symposium on Security and Privacy (SP)","volume":"08 1","pages":"859-876"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40000.2020.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

We present a new succinct zero knowledge argument scheme for layered arithmetic circuits without trusted setup. The prover time is O(C + nlogn) and the proof size is O(D logC +log2 n) for a D-depth circuit with n inputs and C gates. The verification time is also succinct, O(D logC + log2 n), if the circuit is structured. Our scheme only uses lightweight cryptographic primitives such as collision-resistant hash functions and is plausibly post-quantum secure. We implement a zero knowledge argument system, Virgo, based on our new scheme and compare its performance to existing schemes. Experiments show that it only takes 53 seconds to generate a proof for a circuit computing a Merkle tree with 256 leaves, at least an order of magnitude faster than all other succinct zero knowledge argument schemes. The verification time is 50ms, and the proof size is 253KB, both competitive to existing systems.Underlying Virgo is a new transparent zero knowledge verifiable polynomial delegation scheme with logarithmic proof size and verification time. The scheme is in the interactive oracle proof model and may be of independent interest.
透明多项式委托及其在零知识证明中的应用
提出了一种新的简洁的无信任设置的分层算术电路零知识参数方案。对于具有n个输入和C门的D深度电路,证明时间为O(C + nlogn),证明尺寸为O(D logC + log2n)。验证时间也很简洁,O(D logC + log2n),如果电路是结构化的。我们的方案只使用轻量级的加密原语,如抗碰撞哈希函数,并且似乎是后量子安全的。我们在新方案的基础上实现了一个零知识论证系统Virgo,并将其性能与现有方案进行了比较。实验表明,为计算具有256个叶子的Merkle树的电路生成证明只需要53秒,至少比所有其他简洁的零知识论证方案快一个数量级。验证时间为50ms,证明大小为253KB,均与现有系统具有竞争力。Virgo是一种新的透明的零知识可验证多项式授权方案,具有对数证明大小和验证时间。该方案采用交互式oracle证明模型,可能具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信