{"title":"A 3-Dimensional Numerical Thermal Analysis for A Vertical Double U-Tube Ground-Coupled Heat Pump","authors":"A. Tarrad","doi":"10.18178/ijcea.2021.12.2.789","DOIUrl":null,"url":null,"abstract":"The ground heat exchanger plays a major role in the thermal performance and economic optimization of the ground-coupled heat pump. The present study focuses on the effect of the borehole size and the grout and soil thermal properties on the thermal assessment of these heat exchangers. A double U-tube heat exchanger was studied numerically by the COMSOL Multiphysics 5.4 software in a 3-dimensional discretization model. The double U-tube was circuited as a parallel flow arrangement and situated in a parallel configuration (PFPD) deep in the borehole. The grout and ground thermal conductivities were selected in the range of (0.73-2.0) W/m.K and (1.24-2.8) W/m.K respectively. The results revealed that the ground thermal conductivity showed a more pronounced influence on the thermal performance of the ground heat exchanger and with less extent for the grouting one. Increasing the grout filling thermal conductivity from (0.73) W/m.K to (2.0) W/m.K at a fixed ground thermal conductivity of (2.4) W/m.K has augmented the heat transfer rate by (10) %. The heat transfer rate of the ground heat exchanger exhibited marked enhancement as much as double when the ground thermal conductivity was increased from (1.24) W/m.K to (2.8) W/m.K at fixed grout thermal conductivity range of (0.78-2.0) W/m.K. It has been verified that increasing the borehole size has a negligible effect on the ground heat exchanger thermal performance when a grout with a high thermal conductivity was utilized in the ranged of examined configurations. The steady-state numerical analysis model outcomes of the present work could be implemented for the preliminary borehole design for a ground heat exchanger.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2021.12.2.789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ground heat exchanger plays a major role in the thermal performance and economic optimization of the ground-coupled heat pump. The present study focuses on the effect of the borehole size and the grout and soil thermal properties on the thermal assessment of these heat exchangers. A double U-tube heat exchanger was studied numerically by the COMSOL Multiphysics 5.4 software in a 3-dimensional discretization model. The double U-tube was circuited as a parallel flow arrangement and situated in a parallel configuration (PFPD) deep in the borehole. The grout and ground thermal conductivities were selected in the range of (0.73-2.0) W/m.K and (1.24-2.8) W/m.K respectively. The results revealed that the ground thermal conductivity showed a more pronounced influence on the thermal performance of the ground heat exchanger and with less extent for the grouting one. Increasing the grout filling thermal conductivity from (0.73) W/m.K to (2.0) W/m.K at a fixed ground thermal conductivity of (2.4) W/m.K has augmented the heat transfer rate by (10) %. The heat transfer rate of the ground heat exchanger exhibited marked enhancement as much as double when the ground thermal conductivity was increased from (1.24) W/m.K to (2.8) W/m.K at fixed grout thermal conductivity range of (0.78-2.0) W/m.K. It has been verified that increasing the borehole size has a negligible effect on the ground heat exchanger thermal performance when a grout with a high thermal conductivity was utilized in the ranged of examined configurations. The steady-state numerical analysis model outcomes of the present work could be implemented for the preliminary borehole design for a ground heat exchanger.