Algebraic Properties of Convolution of Arithmetic Functions on the Partial Sub-Basic Sequence of Square-Free Odd Integers

Q1 Engineering
K. Sridevi
{"title":"Algebraic Properties of Convolution of Arithmetic Functions on the Partial Sub-Basic Sequence of Square-Free Odd Integers","authors":"K. Sridevi","doi":"10.37622/IJAER/16.1.2021.67-74","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the notion of partial sub-basic sequence on the sub set of square-free odd integers and using convolution definition of arithmetic functions from the set of square free positive integers to real numbers and obtain some basic algebraic properties of convolution. We also define partial multiplicative functions with respect to partial basic sequences and obtain their properties. These results are extended the results given in Sridevi [7] relating to the arithmetic functions, thus this paper is a sequel to Sridevi [7].","PeriodicalId":36710,"journal":{"name":"International Journal of Applied Engineering Research (Netherlands)","volume":"06 1","pages":"67-74"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Engineering Research (Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/IJAER/16.1.2021.67-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the notion of partial sub-basic sequence on the sub set of square-free odd integers and using convolution definition of arithmetic functions from the set of square free positive integers to real numbers and obtain some basic algebraic properties of convolution. We also define partial multiplicative functions with respect to partial basic sequences and obtain their properties. These results are extended the results given in Sridevi [7] relating to the arithmetic functions, thus this paper is a sequel to Sridevi [7].
无平方奇整数部分子基序列上算术函数卷积的代数性质
本文在无平方奇整数的子集上引入了偏子基序列的概念,利用从无平方正整数集到实数的算术函数的卷积定义,得到了卷积的一些基本代数性质。我们还定义了关于偏基序列的偏乘法函数,并得到了它们的性质。这些结果推广了Sridevi[7]中关于算术函数的结果,因此本文是Sridevi[7]的续篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信