Geometric Approaches on Persistent Homology

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Henry Adams, Baris Coskunuzer
{"title":"Geometric Approaches on Persistent Homology","authors":"Henry Adams, Baris Coskunuzer","doi":"10.1137/21M1422914","DOIUrl":null,"url":null,"abstract":"We introduce several geometric notions, including the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the\"life span\"or\"persistence\"of a homology class. As a case study, we analyze the power filtration on unweighted graphs, and provide explicit bounds for the life spans of homology classes in persistence diagrams in all dimensions.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21M1422914","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

We introduce several geometric notions, including the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the"life span"or"persistence"of a homology class. As a case study, we analyze the power filtration on unweighted graphs, and provide explicit bounds for the life spans of homology classes in persistence diagrams in all dimensions.
关于持久同调的几何方法
我们引入了几个几何概念,包括同调类的宽度,来讨论持久同调理论。这些思想提供了持久性图的几何解释。实际上,我们给出了同调类的“寿命”或“持久性”的定量和几何描述。作为案例研究,我们分析了未加权图上的幂过滤,并给出了在所有维度上的持久图中同构类的寿命的显式界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信