{"title":"A Note on Visible Islands","authors":"Sophie Leuchtner, Carlos M. Nicolás, Andrew Suk","doi":"10.1556/012.2022.01524","DOIUrl":null,"url":null,"abstract":"Given a finite point set P in the plane, a subset S⊆P is called an island in P if conv(S) ⋂ P = S. We say that S ⊂ P is a visible island if the points in S are pairwise visible and S is an island in P. The famous Big-line Big-clique Conjecture states that for any k ≥ 3 and l ≥ 4, there is an integer n = n(k, l), such that every finite set of at least n points in the plane contains l collinear points or k pairwise visible points. In this paper, we show that this conjecture is false for visible islands, by replacing each point in a Horton set by a triple of collinear points. Hence, there are arbitrarily large finite point sets in the plane with no 4 collinear members and no visible island of size 13.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2022.01524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given a finite point set P in the plane, a subset S⊆P is called an island in P if conv(S) ⋂ P = S. We say that S ⊂ P is a visible island if the points in S are pairwise visible and S is an island in P. The famous Big-line Big-clique Conjecture states that for any k ≥ 3 and l ≥ 4, there is an integer n = n(k, l), such that every finite set of at least n points in the plane contains l collinear points or k pairwise visible points. In this paper, we show that this conjecture is false for visible islands, by replacing each point in a Horton set by a triple of collinear points. Hence, there are arbitrarily large finite point sets in the plane with no 4 collinear members and no visible island of size 13.