Afshana Afroj Bristi, S. M. Jahadun-Nobi, Nurul Abser, M. Hassan
{"title":"Performance Comparison of Cost Efficient Natural Dye Sensitized Solar Cell","authors":"Afshana Afroj Bristi, S. M. Jahadun-Nobi, Nurul Abser, M. Hassan","doi":"10.11648/j.epes.20200904.11","DOIUrl":null,"url":null,"abstract":"Dye-sensitized solar cells (DSSCs) enticed the attention in photovoltaic design due to their unique features of ease of fabrication, low-cost materials, tunable color, and flexibility. In this work, we studied the performance of a low cost dye-sensitized solar cell structure with several natural dyes as a sensitizer. Titanium dioxide (TiO2) was used as the semiconducting layer. The TiO2 film was fabricated on Florine doped Tin Oxide (FTO) glass plate and was annealed and sintered for an hour at 450°C temperature to create a mesoporous layer. To reduce the manufacturing cost, we used Carbon black instead of Platinum (Pt) as a counter electrode. Carbon black provides excellent stability and shows high catalytic ability along with its low cost as the counter electrode in the DSSCs. Eight different dyes have been extracted and purified by Silica gel column chromatography to use in the DSSCs. UV-Visible absorption spectroscopy and fluorescence spectroscopy has been done to measure the absorbance coefficient and fluorescence coefficient of each of the cells. The cells with an additional peak in the fluorescence spectra showed much better electrical performance compared with others. Among the fabricated DSSCs, the Curcuma longa based DSSC gives the highest open-circuit voltage of 0.5959 V and short circuit current density of 1.06 mA/cm2. The study also indicates that the dyes with a peak at 380 nm to 400 nm wavelength at fluorescence spectrum has better photovoltaic performance rather with a moderate absorbance spectrum.","PeriodicalId":43153,"journal":{"name":"International Journal of Power and Energy Systems","volume":"60 1","pages":"60"},"PeriodicalIF":0.3000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.epes.20200904.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dye-sensitized solar cells (DSSCs) enticed the attention in photovoltaic design due to their unique features of ease of fabrication, low-cost materials, tunable color, and flexibility. In this work, we studied the performance of a low cost dye-sensitized solar cell structure with several natural dyes as a sensitizer. Titanium dioxide (TiO2) was used as the semiconducting layer. The TiO2 film was fabricated on Florine doped Tin Oxide (FTO) glass plate and was annealed and sintered for an hour at 450°C temperature to create a mesoporous layer. To reduce the manufacturing cost, we used Carbon black instead of Platinum (Pt) as a counter electrode. Carbon black provides excellent stability and shows high catalytic ability along with its low cost as the counter electrode in the DSSCs. Eight different dyes have been extracted and purified by Silica gel column chromatography to use in the DSSCs. UV-Visible absorption spectroscopy and fluorescence spectroscopy has been done to measure the absorbance coefficient and fluorescence coefficient of each of the cells. The cells with an additional peak in the fluorescence spectra showed much better electrical performance compared with others. Among the fabricated DSSCs, the Curcuma longa based DSSC gives the highest open-circuit voltage of 0.5959 V and short circuit current density of 1.06 mA/cm2. The study also indicates that the dyes with a peak at 380 nm to 400 nm wavelength at fluorescence spectrum has better photovoltaic performance rather with a moderate absorbance spectrum.
期刊介绍:
First published in 1972, this journal serves a worldwide readership of power and energy professionals. As one of the premier referred publications in the field, this journal strives to be the first to explore emerging energy issues, featuring only papers of the highest scientific merit. The subject areas of this journal include power transmission, distribution and generation, electric power quality, education, energy development, competition and regulation, power electronics, communication, electric machinery, power engineering systems, protection, reliability and security, energy management systems and supervisory control, economics, dispatching and scheduling, energy systems modelling and simulation, alternative energy sources, policy and planning.