{"title":"Initial-boundary value problem for distributed order time-fractional diffusion equations","authors":"Zhi-yuan Li, Yavar Kian, É. Soccorsi","doi":"10.3233/asy-191532","DOIUrl":null,"url":null,"abstract":"We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initial value and source term. Moreover, under suitable assumption on the source term, we establish that the solution is analytic in time.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"36 1","pages":"95-126"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-191532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initial value and source term. Moreover, under suitable assumption on the source term, we establish that the solution is analytic in time.