Reducing Data Sparsity in Recommender Systems

Nadia F. Al-Bakri, S. H. Hashim
{"title":"Reducing Data Sparsity in Recommender Systems","authors":"Nadia F. Al-Bakri, S. H. Hashim","doi":"10.22401/JNUS.21.2.20","DOIUrl":null,"url":null,"abstract":"Recommender systems are used to find user's interested things among a huge amount of digital information. Collaborative filtering is used to generate recommendations. However, the data sparsity problem leads to generate unreasonable recommendations for those users who provide no ratings. From this point, this paper presents a modest approach to enhance prediction in movielens dataset with high sparsity by applying collaborative filtering methods. The proposal consists of three consequence phases: preprocessing phase, similarity phase, prediction phase. The experimental results obtained conducting similarity measures against movielens user rating datasets show that the result of prediction is enhanced about 10% to15% with the non-sparse rating matrix.","PeriodicalId":14922,"journal":{"name":"Journal of Al-Nahrain University-Science","volume":"99 1","pages":"138-147"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Al-Nahrain University-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22401/JNUS.21.2.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Recommender systems are used to find user's interested things among a huge amount of digital information. Collaborative filtering is used to generate recommendations. However, the data sparsity problem leads to generate unreasonable recommendations for those users who provide no ratings. From this point, this paper presents a modest approach to enhance prediction in movielens dataset with high sparsity by applying collaborative filtering methods. The proposal consists of three consequence phases: preprocessing phase, similarity phase, prediction phase. The experimental results obtained conducting similarity measures against movielens user rating datasets show that the result of prediction is enhanced about 10% to15% with the non-sparse rating matrix.
减少推荐系统中的数据稀疏性
推荐系统用于从海量的数字信息中找到用户感兴趣的东西。协同过滤用于生成推荐。然而,数据稀疏性问题会导致对那些没有提供评级的用户产生不合理的推荐。从这一点出发,本文提出了一种适度的方法,利用协同过滤方法来增强高稀疏度电影数据集的预测能力。该方案包括三个推理阶段:预处理阶段、相似阶段和预测阶段。对电影用户评分数据集进行相似性度量的实验结果表明,非稀疏评分矩阵的预测结果提高了10% ~ 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信