Maximizing Legibility in Stochastic Environments

Shuwa Miura, A. Cohen, S. Zilberstein
{"title":"Maximizing Legibility in Stochastic Environments","authors":"Shuwa Miura, A. Cohen, S. Zilberstein","doi":"10.1109/RO-MAN50785.2021.9515318","DOIUrl":null,"url":null,"abstract":"Making an agent’s intentions clear from its observed behavior is crucial for seamless human-agent interaction and for increased transparency and trust in AI systems. Existing methods that address this challenge and maximize legibility of behaviors are limited to deterministic domains. We develop a technique for maximizing legibility in stochastic environments and illustrate that using legibility as an objective improves interpretability of agent behavior in several scenarios. We provide initial empirical evidence that human subjects can better interpret legible behavior.","PeriodicalId":6854,"journal":{"name":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","volume":"50 1","pages":"1053-1059"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN50785.2021.9515318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Making an agent’s intentions clear from its observed behavior is crucial for seamless human-agent interaction and for increased transparency and trust in AI systems. Existing methods that address this challenge and maximize legibility of behaviors are limited to deterministic domains. We develop a technique for maximizing legibility in stochastic environments and illustrate that using legibility as an objective improves interpretability of agent behavior in several scenarios. We provide initial empirical evidence that human subjects can better interpret legible behavior.
在随机环境中最大化易读性
从观察到的行为中明确智能体的意图对于无缝的人与智能体交互以及增加人工智能系统的透明度和信任至关重要。解决这一挑战和最大化行为易读性的现有方法仅限于确定性领域。我们开发了一种在随机环境中最大化易读性的技术,并说明在几种情况下使用易读性作为目标可以提高智能体行为的可解释性。我们提供了初步的经验证据,证明人类受试者可以更好地解释可读的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信