Yubao Zhao, Jingyu Gao, Lina Li, Sheng Chen, Chun Hu, W. Choi
{"title":"Identification and Analysis of Multiple Factors Controlling Solar-Driven H 2O 2 Synthesis Using Engineered Polymeric Carbon Nitride","authors":"Yubao Zhao, Jingyu Gao, Lina Li, Sheng Chen, Chun Hu, W. Choi","doi":"10.2139/ssrn.3606779","DOIUrl":null,"url":null,"abstract":"\n Solar-driven hydrogen peroxide (H2O2) production presents unique merits of sustainability and environmental friendliness. Herein, highly efficient solar-driven H2O2 production through dioxygen reduction is achieved by employing polymeric carbon nitride (PCN) framework with sodium cyanaminate moiety (PCN-NaCA), affording a superior H2O2 production rate of 175 μmol/h on 10 mg photocatalyst and a notable apparent quantum yield of 27.6% at 380 nm. The overall photocatalytic transformation process is systematically analyzed using various steady-state/transient spectroscopic and computational methods. The presence of sodium cyanaminate moiety in PCN-NaCA induces the following multiple effects: enhancing photon absorption, creating the coexistence of p-type and n-type domains, strengthening surface adsorption of dioxygen, and favoring highly selective 2e− ORR. In particular, the adsorption of dioxygen on PCN-NaCA enhances the population and lifetime of trapped electrons in the ps-ns time regime, which should have a notable synergic effect on oxygen reduction process.","PeriodicalId":18731,"journal":{"name":"Materials Processing & Manufacturing eJournal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Processing & Manufacturing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3606779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven hydrogen peroxide (H2O2) production presents unique merits of sustainability and environmental friendliness. Herein, highly efficient solar-driven H2O2 production through dioxygen reduction is achieved by employing polymeric carbon nitride (PCN) framework with sodium cyanaminate moiety (PCN-NaCA), affording a superior H2O2 production rate of 175 μmol/h on 10 mg photocatalyst and a notable apparent quantum yield of 27.6% at 380 nm. The overall photocatalytic transformation process is systematically analyzed using various steady-state/transient spectroscopic and computational methods. The presence of sodium cyanaminate moiety in PCN-NaCA induces the following multiple effects: enhancing photon absorption, creating the coexistence of p-type and n-type domains, strengthening surface adsorption of dioxygen, and favoring highly selective 2e− ORR. In particular, the adsorption of dioxygen on PCN-NaCA enhances the population and lifetime of trapped electrons in the ps-ns time regime, which should have a notable synergic effect on oxygen reduction process.