Continuous Lambertian shape from shading: a primal-dual algorithm

IF 1.9 3区 数学 Q2 Mathematics
Hamza Ennaji, N. Igbida, Van Thanh Nguyen
{"title":"Continuous Lambertian shape from shading: a primal-dual algorithm","authors":"Hamza Ennaji, N. Igbida, Van Thanh Nguyen","doi":"10.1051/m2an/2022014","DOIUrl":null,"url":null,"abstract":"The continuous Lambertian shape from shading is studied using a PDE approach\n\nin terms of Hamilton–Jacobi equations. The latter will then be characterized by a maximization\n\nproblem. In this paper we show the convergence of discretization and propose to use the wellknown\n\nChambolle–Pock primal-dual algorithm to solve numerically the shape from shading\n\nproblem. The saddle-point structure of the problem makes the Chambolle–Pock algorithm\n\nsuitable to approximate solutions of the discretized problems.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

The continuous Lambertian shape from shading is studied using a PDE approach in terms of Hamilton–Jacobi equations. The latter will then be characterized by a maximization problem. In this paper we show the convergence of discretization and propose to use the wellknown Chambolle–Pock primal-dual algorithm to solve numerically the shape from shading problem. The saddle-point structure of the problem makes the Chambolle–Pock algorithm suitable to approximate solutions of the discretized problems.
连续朗伯形状从阴影:一个原始对偶算法
利用Hamilton-Jacobi方程的PDE方法研究了阴影的连续朗伯形状。后者将以最大化问题为特征。本文证明了离散化的收敛性,并提出了用著名的chambolle - pock原对偶算法数值求解阴影形状问题。该问题的鞍点结构使得Chambolle-Pock算法适用于离散化问题的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信