Crop Pests Prediction Method Using Regression and Machine Learning Technology: Survey

Yun Hwan Kim , Seong Joon Yoo , Yeong Hyeon Gu , Jin Hee Lim , Dongil Han , Sung Wook Baik
{"title":"Crop Pests Prediction Method Using Regression and Machine Learning Technology: Survey","authors":"Yun Hwan Kim ,&nbsp;Seong Joon Yoo ,&nbsp;Yeong Hyeon Gu ,&nbsp;Jin Hee Lim ,&nbsp;Dongil Han ,&nbsp;Sung Wook Baik","doi":"10.1016/j.ieri.2014.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes current trends in the prediction of crop pests using machine learning technology. With the advent of data mining, the field of agriculture is also focused on it. Currently, various studies, domestic and overseas, are under progress using machine learning technology, and cases of its utilization are increasing. This paper classifies and introduces SVM (Support Vector Machine), Multiple Linear Regression, Neural Network, and Bayesian Network based techniques, and describes some cases of their utilization.</p></div>","PeriodicalId":100649,"journal":{"name":"IERI Procedia","volume":"6 ","pages":"Pages 52-56"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ieri.2014.03.009","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IERI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212667814000100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

This paper describes current trends in the prediction of crop pests using machine learning technology. With the advent of data mining, the field of agriculture is also focused on it. Currently, various studies, domestic and overseas, are under progress using machine learning technology, and cases of its utilization are increasing. This paper classifies and introduces SVM (Support Vector Machine), Multiple Linear Regression, Neural Network, and Bayesian Network based techniques, and describes some cases of their utilization.

基于回归和机器学习技术的作物害虫预测方法:综述☆
本文介绍了利用机器学习技术预测农作物有害生物的最新趋势。随着数据挖掘的出现,农业领域也开始关注数据挖掘。目前,国内外对机器学习技术的各种研究正在进行中,其应用案例也在不断增加。本文对支持向量机(SVM)、多元线性回归、神经网络和贝叶斯网络技术进行了分类和介绍,并介绍了它们的一些应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信