Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
Eduard Feireisl , Antonín Novotný
{"title":"Stability of planar rarefaction waves under general viscosity perturbation of the isentropic Euler system","authors":"Eduard Feireisl ,&nbsp;Antonín Novotný","doi":"10.1016/j.anihpc.2021.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the vanishing viscosity limit for a model of a general non-Newtonian compressible fluid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span><span>. We suppose that the initial data<span><span> approach a profile determined by the Riemann data generating a planar rarefaction wave for the isentropic Euler system. Under these circumstances the associated sequence of dissipative solutions approaches the corresponding rarefaction wave strongly in the energy norm in the vanishing viscosity limit. The result covers the particular case of a linearly </span>viscous fluid governed by the Navier–Stokes system.</span></span></p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 6","pages":"Pages 1725-1737"},"PeriodicalIF":1.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.01.001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000202","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the vanishing viscosity limit for a model of a general non-Newtonian compressible fluid in Rd, d=2,3. We suppose that the initial data approach a profile determined by the Riemann data generating a planar rarefaction wave for the isentropic Euler system. Under these circumstances the associated sequence of dissipative solutions approaches the corresponding rarefaction wave strongly in the energy norm in the vanishing viscosity limit. The result covers the particular case of a linearly viscous fluid governed by the Navier–Stokes system.

等熵欧拉系统一般粘度扰动下平面稀疏波的稳定性
我们考虑了一般非牛顿可压缩流体模型在Rd, d=2,3时的消失粘度极限。我们假设初始数据接近由黎曼数据确定的轮廓,产生等熵欧拉系统的平面稀疏波。在这种情况下,相关的耗散解序列在消失粘度极限的能量范数中强烈地接近相应的稀疏波。结果涵盖了由Navier-Stokes系统控制的线性粘性流体的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信