On-line estimation of ARMA models using Fisher-scoring

Abdelhamid Ouakasse, G. Mélard
{"title":"On-line estimation of ARMA models using Fisher-scoring","authors":"Abdelhamid Ouakasse, G. Mélard","doi":"10.1080/21642583.2014.912572","DOIUrl":null,"url":null,"abstract":"Recursive estimation methods for time series models usually make use of recurrences for the vector of parameters, the model error and its derivatives with respect to the parameters, plus a recurrence for the Hessian of the model error. An alternative method is proposed in the case of an autoregressive-moving average model, where the Hessian is not updated but is replaced, at each time, by the inverse of the Fisher information matrix evaluated at the current parameter. The asymptotic properties, consistency and asymptotic normality, of the new estimator are obtained. Monte Carlo experiments indicate that the estimates may converge faster to the true values of the parameters than when the Hessian is updated. The paper is illustrated by an example on forecasting the speed of wind.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.912572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recursive estimation methods for time series models usually make use of recurrences for the vector of parameters, the model error and its derivatives with respect to the parameters, plus a recurrence for the Hessian of the model error. An alternative method is proposed in the case of an autoregressive-moving average model, where the Hessian is not updated but is replaced, at each time, by the inverse of the Fisher information matrix evaluated at the current parameter. The asymptotic properties, consistency and asymptotic normality, of the new estimator are obtained. Monte Carlo experiments indicate that the estimates may converge faster to the true values of the parameters than when the Hessian is updated. The paper is illustrated by an example on forecasting the speed of wind.
基于fisher评分的ARMA模型在线估计
时间序列模型的递归估计方法通常利用参数向量、模型误差及其对参数的导数的递归,加上模型误差的Hessian的递归。在自回归移动平均模型的情况下,提出了一种替代方法,其中Hessian不更新,但每次都被在当前参数下评估的Fisher信息矩阵的逆所取代。得到了新估计量的渐近性质、相合性和渐近正态性。蒙特卡罗实验表明,与更新Hessian模型相比,估计可以更快地收敛于参数的真实值。本文以风速预报为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信